L(s) = 1 | + (0.561 − 0.827i)2-s + (−0.370 − 0.928i)4-s + (−0.907 − 0.419i)5-s + (0.267 + 0.963i)7-s + (−0.976 − 0.214i)8-s + (−0.856 + 0.515i)10-s + (0.725 + 0.687i)11-s + (−0.994 − 0.108i)13-s + (0.947 + 0.319i)14-s + (−0.725 + 0.687i)16-s + (−0.267 + 0.963i)17-s + (0.796 + 0.605i)19-s + (−0.0541 + 0.998i)20-s + (0.976 − 0.214i)22-s + (−0.468 − 0.883i)23-s + ⋯ |
L(s) = 1 | + (0.561 − 0.827i)2-s + (−0.370 − 0.928i)4-s + (−0.907 − 0.419i)5-s + (0.267 + 0.963i)7-s + (−0.976 − 0.214i)8-s + (−0.856 + 0.515i)10-s + (0.725 + 0.687i)11-s + (−0.994 − 0.108i)13-s + (0.947 + 0.319i)14-s + (−0.725 + 0.687i)16-s + (−0.267 + 0.963i)17-s + (0.796 + 0.605i)19-s + (−0.0541 + 0.998i)20-s + (0.976 − 0.214i)22-s + (−0.468 − 0.883i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.843 + 0.536i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.843 + 0.536i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.254960635 + 0.3654972640i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.254960635 + 0.3654972640i\) |
\(L(1)\) |
\(\approx\) |
\(1.037439993 - 0.2784564954i\) |
\(L(1)\) |
\(\approx\) |
\(1.037439993 - 0.2784564954i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 59 | \( 1 \) |
good | 2 | \( 1 + (0.561 - 0.827i)T \) |
| 5 | \( 1 + (-0.907 - 0.419i)T \) |
| 7 | \( 1 + (0.267 + 0.963i)T \) |
| 11 | \( 1 + (0.725 + 0.687i)T \) |
| 13 | \( 1 + (-0.994 - 0.108i)T \) |
| 17 | \( 1 + (-0.267 + 0.963i)T \) |
| 19 | \( 1 + (0.796 + 0.605i)T \) |
| 23 | \( 1 + (-0.468 - 0.883i)T \) |
| 29 | \( 1 + (0.561 + 0.827i)T \) |
| 31 | \( 1 + (0.796 - 0.605i)T \) |
| 37 | \( 1 + (0.976 - 0.214i)T \) |
| 41 | \( 1 + (-0.468 + 0.883i)T \) |
| 43 | \( 1 + (-0.725 + 0.687i)T \) |
| 47 | \( 1 + (-0.907 + 0.419i)T \) |
| 53 | \( 1 + (0.856 + 0.515i)T \) |
| 61 | \( 1 + (-0.561 + 0.827i)T \) |
| 67 | \( 1 + (0.976 + 0.214i)T \) |
| 71 | \( 1 + (-0.907 + 0.419i)T \) |
| 73 | \( 1 + (-0.947 - 0.319i)T \) |
| 79 | \( 1 + (0.0541 - 0.998i)T \) |
| 83 | \( 1 + (0.161 - 0.986i)T \) |
| 89 | \( 1 + (0.561 + 0.827i)T \) |
| 97 | \( 1 + (-0.947 + 0.319i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.90989871313501455017450518293, −26.304560724504162727800981240864, −24.871432529459065349430710437295, −24.15362986115204028494277329386, −23.309450102910602191163982621071, −22.47099811937635169691268695183, −21.64627971267484890488088936419, −20.24330875794329027503124878477, −19.42057047090856057495726632800, −18.03493211374000334285479452507, −17.07123791488612559971890562605, −16.15528419308111297038059112356, −15.2486386389303897772669765757, −14.151147872201885915929770509840, −13.59415246064680141231839534828, −11.95268724686267333391817394823, −11.41409222083108910959882161069, −9.75266247520049141992677086935, −8.328249837347785183850357020581, −7.347510052946455513539842670615, −6.69608757406165767428552138320, −5.040787217490493460690189753080, −4.05584147662560600899418483284, −3.01091696472301272706075547709, −0.41131290805254540954788922732,
1.40777399996985105187318655594, 2.77341404377437032217780856943, 4.17554590600379457577870788767, 4.99242013685604982349205474136, 6.35190787473645854418975181932, 8.002291293214179887270913582145, 9.120971834857352222050692981398, 10.19323753792737253232994851419, 11.65849141205892952430626520554, 12.1037286939350503582411312370, 12.93925349708801241112569859772, 14.65264045280173849650369063513, 14.964927439149123431540195639013, 16.27891124781167433114192975408, 17.72118488197077265625002973848, 18.78184375484477400768248230827, 19.73771402940527993003310034297, 20.310205000690509350235654089046, 21.568457941643798708635115554625, 22.32825041834425172556206367099, 23.217149563478266620474504310661, 24.36851010576270370866362661933, 24.84612430729919186543259942686, 26.63390013684299763791970031885, 27.59889960286054587136574007489