# Properties

 Label 1-175-175.48-r0-0-0 Degree $1$ Conductor $175$ Sign $0.982 - 0.187i$ Analytic cond. $0.812696$ Root an. cond. $0.812696$ Motivic weight $0$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.951 − 0.309i)2-s + (−0.587 + 0.809i)3-s + (0.809 + 0.587i)4-s + (0.809 − 0.587i)6-s + (−0.587 − 0.809i)8-s + (−0.309 − 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.951 + 0.309i)12-s + (0.951 − 0.309i)13-s + (0.309 + 0.951i)16-s + (−0.587 − 0.809i)17-s + i·18-s + (−0.809 + 0.587i)19-s + (−0.587 + 0.809i)22-s + (0.951 + 0.309i)23-s + 24-s + ⋯
 L(s)  = 1 + (−0.951 − 0.309i)2-s + (−0.587 + 0.809i)3-s + (0.809 + 0.587i)4-s + (0.809 − 0.587i)6-s + (−0.587 − 0.809i)8-s + (−0.309 − 0.951i)9-s + (0.309 − 0.951i)11-s + (−0.951 + 0.309i)12-s + (0.951 − 0.309i)13-s + (0.309 + 0.951i)16-s + (−0.587 − 0.809i)17-s + i·18-s + (−0.809 + 0.587i)19-s + (−0.587 + 0.809i)22-s + (0.951 + 0.309i)23-s + 24-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.982 - 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$1$$ Conductor: $$175$$    =    $$5^{2} \cdot 7$$ Sign: $0.982 - 0.187i$ Analytic conductor: $$0.812696$$ Root analytic conductor: $$0.812696$$ Motivic weight: $$0$$ Rational: no Arithmetic: yes Character: $\chi_{175} (48, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(1,\ 175,\ (0:\ ),\ 0.982 - 0.187i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$0.6103846203 - 0.05769833434i$$ $$L(\frac12)$$ $$\approx$$ $$0.6103846203 - 0.05769833434i$$ $$L(1)$$ $$\approx$$ $$0.6256848110 + 0.0001287501421i$$ $$L(1)$$ $$\approx$$ $$0.6256848110 + 0.0001287501421i$$

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad5 $$1$$
7 $$1$$
good2 $$1 + (-0.951 - 0.309i)T$$
3 $$1 + (-0.587 + 0.809i)T$$
11 $$1 + (0.309 - 0.951i)T$$
13 $$1 + (0.951 - 0.309i)T$$
17 $$1 + (-0.587 - 0.809i)T$$
19 $$1 + (-0.809 + 0.587i)T$$
23 $$1 + (0.951 + 0.309i)T$$
29 $$1 + (0.809 + 0.587i)T$$
31 $$1 + (0.809 - 0.587i)T$$
37 $$1 + (0.951 - 0.309i)T$$
41 $$1 + (-0.309 - 0.951i)T$$
43 $$1 + iT$$
47 $$1 + (0.587 - 0.809i)T$$
53 $$1 + (0.587 - 0.809i)T$$
59 $$1 + (0.309 + 0.951i)T$$
61 $$1 + (-0.309 + 0.951i)T$$
67 $$1 + (0.587 + 0.809i)T$$
71 $$1 + (-0.809 - 0.587i)T$$
73 $$1 + (-0.951 - 0.309i)T$$
79 $$1 + (0.809 + 0.587i)T$$
83 $$1 + (0.587 + 0.809i)T$$
89 $$1 + (0.309 - 0.951i)T$$
97 $$1 + (0.587 - 0.809i)T$$
$$L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}$$