Properties

Label 1-175-175.116-r0-0-0
Degree $1$
Conductor $175$
Sign $0.992 + 0.124i$
Analytic cond. $0.812696$
Root an. cond. $0.812696$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.978 − 0.207i)2-s + (0.913 + 0.406i)3-s + (0.913 + 0.406i)4-s + (−0.809 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (0.669 + 0.743i)9-s + (0.669 − 0.743i)11-s + (0.669 + 0.743i)12-s + (0.309 − 0.951i)13-s + (0.669 + 0.743i)16-s + (−0.104 + 0.994i)17-s + (−0.5 − 0.866i)18-s + (0.913 − 0.406i)19-s + (−0.809 + 0.587i)22-s + (−0.978 − 0.207i)23-s + (−0.5 − 0.866i)24-s + ⋯
L(s)  = 1  + (−0.978 − 0.207i)2-s + (0.913 + 0.406i)3-s + (0.913 + 0.406i)4-s + (−0.809 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (0.669 + 0.743i)9-s + (0.669 − 0.743i)11-s + (0.669 + 0.743i)12-s + (0.309 − 0.951i)13-s + (0.669 + 0.743i)16-s + (−0.104 + 0.994i)17-s + (−0.5 − 0.866i)18-s + (0.913 − 0.406i)19-s + (−0.809 + 0.587i)22-s + (−0.978 − 0.207i)23-s + (−0.5 − 0.866i)24-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.124i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.124i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.992 + 0.124i$
Analytic conductor: \(0.812696\)
Root analytic conductor: \(0.812696\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (116, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 175,\ (0:\ ),\ 0.992 + 0.124i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.060685290 + 0.06644336577i\)
\(L(\frac12)\) \(\approx\) \(1.060685290 + 0.06644336577i\)
\(L(1)\) \(\approx\) \(0.9830130804 + 0.03353680023i\)
\(L(1)\) \(\approx\) \(0.9830130804 + 0.03353680023i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 \)
good2 \( 1 + (-0.978 - 0.207i)T \)
3 \( 1 + (0.913 + 0.406i)T \)
11 \( 1 + (0.669 - 0.743i)T \)
13 \( 1 + (0.309 - 0.951i)T \)
17 \( 1 + (-0.104 + 0.994i)T \)
19 \( 1 + (0.913 - 0.406i)T \)
23 \( 1 + (-0.978 - 0.207i)T \)
29 \( 1 + (-0.809 + 0.587i)T \)
31 \( 1 + (-0.104 + 0.994i)T \)
37 \( 1 + (0.669 + 0.743i)T \)
41 \( 1 + (0.309 - 0.951i)T \)
43 \( 1 + T \)
47 \( 1 + (-0.104 - 0.994i)T \)
53 \( 1 + (0.913 + 0.406i)T \)
59 \( 1 + (-0.978 + 0.207i)T \)
61 \( 1 + (-0.978 - 0.207i)T \)
67 \( 1 + (-0.104 + 0.994i)T \)
71 \( 1 + (-0.809 + 0.587i)T \)
73 \( 1 + (0.669 - 0.743i)T \)
79 \( 1 + (-0.104 - 0.994i)T \)
83 \( 1 + (-0.809 - 0.587i)T \)
89 \( 1 + (-0.978 - 0.207i)T \)
97 \( 1 + (-0.809 + 0.587i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−27.241500574982140998632377821892, −26.33019009002838415202799063877, −25.66172019188522874977986616394, −24.707139596395597742286087615376, −24.11059037061448255130029882581, −22.76579680594947651670208617253, −21.174989828200476586124442703851, −20.31835425735369052405353973541, −19.632279700893460306100469029803, −18.56506030043022353549414378156, −17.9639842530175098057358204554, −16.65733909965744018706280482888, −15.67939811640775131106080388890, −14.6126383437551843544930183508, −13.7967419083117784542677714873, −12.24788295163309934534519503241, −11.34740406830161472931087497081, −9.51925129455416682822239047681, −9.42112547795727196319258704414, −7.91982694995237897332974857020, −7.204754663751363594511936787514, −6.083928840464335881865990677350, −4.07588573538949873125662158932, −2.49817906852989747341746393090, −1.41155224037397409159044096100, 1.43672822489629683175790990734, 2.91603183652859106386719028118, 3.85036580462966733702923467269, 5.8372188996147506151371403477, 7.30816711568299867121502783072, 8.338241280219475207266566698392, 9.050402005512988232775172819920, 10.17921641373240634795272073337, 11.00223550953749861190393532673, 12.371897858029345895723839229598, 13.608743355107316680625732963045, 14.82690357214438450873909879352, 15.7705431106538978145161674248, 16.62136831573418287715924374912, 17.83566604743282140463564438834, 18.8251145590750107164582752662, 19.83005796959670197981731604806, 20.292476359452610785758789510487, 21.49462303033989664367703137581, 22.205845638267358700522319684620, 24.1183251168755305792742246435, 24.840179316595867792515857236, 25.81817633437426227842150458520, 26.47708915826396638014903969376, 27.44440395488474311831949216885

Graph of the $Z$-function along the critical line