L(s) = 1 | + (−0.994 + 0.104i)2-s + (0.207 + 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (−0.951 + 0.309i)8-s + (−0.913 + 0.406i)9-s + (0.913 + 0.406i)11-s + (0.406 + 0.913i)12-s + (−0.587 + 0.809i)13-s + (0.913 − 0.406i)16-s + (0.743 + 0.669i)17-s + (0.866 − 0.5i)18-s + (−0.978 − 0.207i)19-s + (−0.951 − 0.309i)22-s + (0.994 − 0.104i)23-s + (−0.5 − 0.866i)24-s + ⋯ |
L(s) = 1 | + (−0.994 + 0.104i)2-s + (0.207 + 0.978i)3-s + (0.978 − 0.207i)4-s + (−0.309 − 0.951i)6-s + (−0.951 + 0.309i)8-s + (−0.913 + 0.406i)9-s + (0.913 + 0.406i)11-s + (0.406 + 0.913i)12-s + (−0.587 + 0.809i)13-s + (0.913 − 0.406i)16-s + (0.743 + 0.669i)17-s + (0.866 − 0.5i)18-s + (−0.978 − 0.207i)19-s + (−0.951 − 0.309i)22-s + (0.994 − 0.104i)23-s + (−0.5 − 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.388 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.388 + 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3940082092 + 0.5937296675i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3940082092 + 0.5937296675i\) |
\(L(1)\) |
\(\approx\) |
\(0.6294529673 + 0.3588893784i\) |
\(L(1)\) |
\(\approx\) |
\(0.6294529673 + 0.3588893784i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.994 + 0.104i)T \) |
| 3 | \( 1 + (0.207 + 0.978i)T \) |
| 11 | \( 1 + (0.913 + 0.406i)T \) |
| 13 | \( 1 + (-0.587 + 0.809i)T \) |
| 17 | \( 1 + (0.743 + 0.669i)T \) |
| 19 | \( 1 + (-0.978 - 0.207i)T \) |
| 23 | \( 1 + (0.994 - 0.104i)T \) |
| 29 | \( 1 + (-0.309 + 0.951i)T \) |
| 31 | \( 1 + (-0.669 + 0.743i)T \) |
| 37 | \( 1 + (-0.406 - 0.913i)T \) |
| 41 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.743 + 0.669i)T \) |
| 53 | \( 1 + (-0.207 - 0.978i)T \) |
| 59 | \( 1 + (-0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.104 + 0.994i)T \) |
| 67 | \( 1 + (-0.743 - 0.669i)T \) |
| 71 | \( 1 + (0.309 - 0.951i)T \) |
| 73 | \( 1 + (0.406 - 0.913i)T \) |
| 79 | \( 1 + (-0.669 - 0.743i)T \) |
| 83 | \( 1 + (0.951 - 0.309i)T \) |
| 89 | \( 1 + (-0.104 - 0.994i)T \) |
| 97 | \( 1 + (0.951 + 0.309i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.26966388324886915751842229151, −26.112679145796526551951125876538, −25.086011298775114728793972864779, −24.74476530388724908607710913854, −23.55996190055648598967761164434, −22.3706042844216173967001504637, −20.950539144261289482015457762904, −20.0606863072051927595551822582, −19.133415530415707833542092431093, −18.59854005353724122369062539698, −17.27129760847327277819354380769, −16.919412168417350395962693664098, −15.30503424860591527711797962499, −14.34381557185425024075152857136, −12.94164122458438645348627689733, −12.01629055033500984988221479644, −11.09949073297506179853149118704, −9.72330036906100992808620423560, −8.69347091884404713127416858833, −7.72736000710837559554840400826, −6.81240225857591225249199493808, −5.70428313457718892931671976402, −3.3817831192978423193147846299, −2.18022532237159137344146411312, −0.7871360839560617062495109776,
1.79942757623693140275954096327, 3.3009200764202826759925299940, 4.70446571955487654927560738103, 6.18579651274628109756205690780, 7.38556664481690051923460653696, 8.77650618824497635087109471777, 9.35660880533420410602123157330, 10.43659353881100420886098005114, 11.3113839653133407888507519617, 12.496578846303417640409744973650, 14.59925155840471902879996432207, 14.798071051913827510892036898751, 16.29221206203720210060727188687, 16.822252817625811943009134441315, 17.76998142589244302575518359593, 19.33985726445888714615162660963, 19.66338484295553636391420741128, 21.0094959005024369683794800471, 21.57518812687135395193453380135, 22.90368551774080790531472926911, 24.13367523172811137413702084573, 25.31176325374513962874531250226, 25.90816823828744851155320343806, 26.90826647056090337161949658993, 27.62049202065825880151670404365