L(s) = 1 | − 3-s + (−0.809 + 0.587i)5-s + (−0.309 + 0.951i)7-s + 9-s + (0.809 + 0.587i)11-s + (0.309 + 0.951i)13-s + (0.809 − 0.587i)15-s + (−0.809 − 0.587i)17-s + (−0.309 + 0.951i)19-s + (0.309 − 0.951i)21-s + (−0.309 − 0.951i)23-s + (0.309 − 0.951i)25-s − 27-s + (−0.809 + 0.587i)29-s + (0.809 + 0.587i)31-s + ⋯ |
L(s) = 1 | − 3-s + (−0.809 + 0.587i)5-s + (−0.309 + 0.951i)7-s + 9-s + (0.809 + 0.587i)11-s + (0.309 + 0.951i)13-s + (0.809 − 0.587i)15-s + (−0.809 − 0.587i)17-s + (−0.309 + 0.951i)19-s + (0.309 − 0.951i)21-s + (−0.309 − 0.951i)23-s + (0.309 − 0.951i)25-s − 27-s + (−0.809 + 0.587i)29-s + (0.809 + 0.587i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.789 - 0.613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.789 - 0.613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.06930118696 + 0.2022994634i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.06930118696 + 0.2022994634i\) |
\(L(1)\) |
\(\approx\) |
\(0.5426099902 + 0.1955609918i\) |
\(L(1)\) |
\(\approx\) |
\(0.5426099902 + 0.1955609918i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 41 | \( 1 \) |
good | 3 | \( 1 - T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
| 13 | \( 1 + (0.309 + 0.951i)T \) |
| 17 | \( 1 + (-0.809 - 0.587i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (-0.309 - 0.951i)T \) |
| 29 | \( 1 + (-0.809 + 0.587i)T \) |
| 31 | \( 1 + (0.809 + 0.587i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 + (-0.309 - 0.951i)T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (-0.309 - 0.951i)T \) |
| 61 | \( 1 + (0.309 - 0.951i)T \) |
| 67 | \( 1 + (0.809 - 0.587i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.309 - 0.951i)T \) |
| 97 | \( 1 + (-0.809 + 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.154702957623909554869482386803, −26.133508501298166089490795262374, −24.52005059345105982940844726720, −23.968694739380704083994358904967, −22.984112355445459607963408221718, −22.31766768991007491888699055668, −21.058609038767451295074404431212, −19.85236611376168768329368971673, −19.23606657683098774029056450593, −17.63178359483562008032802484520, −17.047916665917467325872814436834, −16.04342454706864037252338926361, −15.2634787982290545425034506888, −13.475398356121451558470389610397, −12.76019747252671298526147826422, −11.47430993020050832222969072199, −10.89582918912496828299499194742, −9.54606739288160637281923228947, −8.13827858777053689212993081353, −6.99682522086192048957324156393, −5.89369162342463846054659224557, −4.503737297237219098435912785917, −3.659230163790265867784148224017, −1.13887113230158540520826932677, −0.10483228147495455562415376401,
1.93165108062744704876592939768, 3.73206955965324465076409400115, 4.844131044825073364661358570867, 6.38834074070325246808668596776, 6.90856447644482878445202764059, 8.54666437980800875861029551468, 9.80650110856760636197119238227, 11.05010836582952971257062224517, 11.90475077671951043679511261873, 12.50105988627631046976047449885, 14.21243313557077679694756390445, 15.349791743367860308259159621723, 16.098811556185286212142488898407, 17.1438159712171756488561655185, 18.49728931601436738515635955362, 18.80292753089000744877729169126, 20.17600921326482453467320079111, 21.5804225796325222963134079719, 22.43557794741702556762272752758, 22.95942674892455024613979951406, 24.08398848549482626663035670144, 25.00905581353001767494897768743, 26.295150383680386287844992877462, 27.28005242890698494378432630380, 28.07358603713821083262001028150