Properties

Label 1-161-161.80-r0-0-0
Degree $1$
Conductor $161$
Sign $-0.328 + 0.944i$
Analytic cond. $0.747680$
Root an. cond. $0.747680$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.580 + 0.814i)2-s + (−0.235 − 0.971i)3-s + (−0.327 + 0.945i)4-s + (0.0475 + 0.998i)5-s + (0.654 − 0.755i)6-s + (−0.959 + 0.281i)8-s + (−0.888 + 0.458i)9-s + (−0.786 + 0.618i)10-s + (−0.580 + 0.814i)11-s + (0.995 + 0.0950i)12-s + (0.142 + 0.989i)13-s + (0.959 − 0.281i)15-s + (−0.786 − 0.618i)16-s + (0.981 + 0.189i)17-s + (−0.888 − 0.458i)18-s + (0.981 − 0.189i)19-s + ⋯
L(s)  = 1  + (0.580 + 0.814i)2-s + (−0.235 − 0.971i)3-s + (−0.327 + 0.945i)4-s + (0.0475 + 0.998i)5-s + (0.654 − 0.755i)6-s + (−0.959 + 0.281i)8-s + (−0.888 + 0.458i)9-s + (−0.786 + 0.618i)10-s + (−0.580 + 0.814i)11-s + (0.995 + 0.0950i)12-s + (0.142 + 0.989i)13-s + (0.959 − 0.281i)15-s + (−0.786 − 0.618i)16-s + (0.981 + 0.189i)17-s + (−0.888 − 0.458i)18-s + (0.981 − 0.189i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.328 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.328 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $-0.328 + 0.944i$
Analytic conductor: \(0.747680\)
Root analytic conductor: \(0.747680\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{161} (80, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 161,\ (0:\ ),\ -0.328 + 0.944i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6791432927 + 0.9556377870i\)
\(L(\frac12)\) \(\approx\) \(0.6791432927 + 0.9556377870i\)
\(L(1)\) \(\approx\) \(0.9891223480 + 0.5919066560i\)
\(L(1)\) \(\approx\) \(0.9891223480 + 0.5919066560i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
23 \( 1 \)
good2 \( 1 + (-0.580 - 0.814i)T \)
3 \( 1 + (0.235 + 0.971i)T \)
5 \( 1 + (-0.0475 - 0.998i)T \)
11 \( 1 + (0.580 - 0.814i)T \)
13 \( 1 + (-0.142 - 0.989i)T \)
17 \( 1 + (-0.981 - 0.189i)T \)
19 \( 1 + (-0.981 + 0.189i)T \)
29 \( 1 + (0.654 - 0.755i)T \)
31 \( 1 + (0.723 + 0.690i)T \)
37 \( 1 + (-0.888 + 0.458i)T \)
41 \( 1 + (0.841 - 0.540i)T \)
43 \( 1 + (-0.959 - 0.281i)T \)
47 \( 1 + (-0.5 + 0.866i)T \)
53 \( 1 + (0.928 - 0.371i)T \)
59 \( 1 + (-0.786 + 0.618i)T \)
61 \( 1 + (-0.235 + 0.971i)T \)
67 \( 1 + (-0.995 + 0.0950i)T \)
71 \( 1 + (-0.415 + 0.909i)T \)
73 \( 1 + (-0.327 + 0.945i)T \)
79 \( 1 + (0.928 + 0.371i)T \)
83 \( 1 + (-0.841 - 0.540i)T \)
89 \( 1 + (-0.723 + 0.690i)T \)
97 \( 1 + (-0.841 + 0.540i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−27.531044595983651003835295300525, −27.096021880284268368368875433757, −25.52528275206042835660977679805, −24.303265119227857199870987845109, −23.38845790106485771006985008155, −22.4451729383081879452152954426, −21.50094361480108909335608355791, −20.66263441530312639733019711634, −20.20171697621391254275532988949, −18.83611510236391747941667186611, −17.57113311207986974540721957911, −16.30879907026587921292106672188, −15.58185379536562512300793932495, −14.33512591635292025465396373777, −13.27682514260339124204601355113, −12.22930456666731472783546643639, −11.23919620307012582815349189348, −10.189715265168911924807776398473, −9.338443120778117467604616331353, −8.15097322146123558008528178926, −5.62197373752251264838810575947, −5.36712911037103751705432113916, −3.96370639394252423346095186618, −2.94580473696608844768534806048, −0.872044548076312093775085134696, 2.174599840525354944097136792733, 3.48734028252178458554422133436, 5.18131134674337522191025141284, 6.25761385090414176290512128942, 7.23396445657916744106234076481, 7.80792259868353861068362550474, 9.464143439800395515431281621832, 11.1394969478921406586983801403, 12.11469950366008844233826886827, 13.14314907898708791847997475849, 14.14038272542038963463249717427, 14.82234478204813415639380242251, 16.14942851715023907095334373720, 17.21103300439827963068267472705, 18.25211092786372398143596301253, 18.73297504978783752474694143288, 20.29930720140951760255213636321, 21.6535670515376099213870863885, 22.5460312589986014720942982687, 23.391900963027422809020114697769, 23.96732197224296328456914835078, 25.24632748178025475815544169966, 25.85009533223431402789312858154, 26.68410245820141730065683795862, 28.15542881181074849067080613590

Graph of the $Z$-function along the critical line