L(s) = 1 | + (−0.654 − 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (−0.415 + 0.909i)5-s + (0.142 + 0.989i)6-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (0.959 − 0.281i)10-s + (−0.654 + 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (0.841 − 0.540i)15-s + (−0.959 − 0.281i)16-s + (0.142 + 0.989i)17-s + (0.415 − 0.909i)18-s + (0.142 − 0.989i)19-s + ⋯ |
L(s) = 1 | + (−0.654 − 0.755i)2-s + (−0.841 − 0.540i)3-s + (−0.142 + 0.989i)4-s + (−0.415 + 0.909i)5-s + (0.142 + 0.989i)6-s + (0.841 − 0.540i)8-s + (0.415 + 0.909i)9-s + (0.959 − 0.281i)10-s + (−0.654 + 0.755i)11-s + (0.654 − 0.755i)12-s + (0.959 − 0.281i)13-s + (0.841 − 0.540i)15-s + (−0.959 − 0.281i)16-s + (0.142 + 0.989i)17-s + (0.415 − 0.909i)18-s + (0.142 − 0.989i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.966 + 0.257i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.966 + 0.257i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.003302550850 + 0.02520801831i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.003302550850 + 0.02520801831i\) |
\(L(1)\) |
\(\approx\) |
\(0.4540421884 - 0.1007544017i\) |
\(L(1)\) |
\(\approx\) |
\(0.4540421884 - 0.1007544017i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (-0.654 - 0.755i)T \) |
| 3 | \( 1 + (-0.841 - 0.540i)T \) |
| 5 | \( 1 + (-0.415 + 0.909i)T \) |
| 11 | \( 1 + (-0.654 + 0.755i)T \) |
| 13 | \( 1 + (0.959 - 0.281i)T \) |
| 17 | \( 1 + (0.142 + 0.989i)T \) |
| 19 | \( 1 + (0.142 - 0.989i)T \) |
| 29 | \( 1 + (-0.142 - 0.989i)T \) |
| 31 | \( 1 + (-0.841 + 0.540i)T \) |
| 37 | \( 1 + (0.415 + 0.909i)T \) |
| 41 | \( 1 + (-0.415 + 0.909i)T \) |
| 43 | \( 1 + (0.841 + 0.540i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (-0.959 - 0.281i)T \) |
| 59 | \( 1 + (0.959 - 0.281i)T \) |
| 61 | \( 1 + (-0.841 + 0.540i)T \) |
| 67 | \( 1 + (-0.654 - 0.755i)T \) |
| 71 | \( 1 + (-0.654 - 0.755i)T \) |
| 73 | \( 1 + (0.142 - 0.989i)T \) |
| 79 | \( 1 + (-0.959 + 0.281i)T \) |
| 83 | \( 1 + (-0.415 - 0.909i)T \) |
| 89 | \( 1 + (-0.841 - 0.540i)T \) |
| 97 | \( 1 + (-0.415 + 0.909i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.78331770654726930525696291578, −27.30232013233811523410444755850, −26.325450138222518837761552097649, −25.15768254977377324276992426747, −24.02706302707112547039717260251, −23.51370799512554927241661175291, −22.55371839042848872332079654197, −21.06979107088926432474239890830, −20.332876842227467839900451398119, −18.832827829849188522465778397571, −18.1100400676429632109321940017, −16.85961318672777459129270814862, −16.15787294274779195085420100788, −15.760980995640050814923304510536, −14.28764987159208951252092423866, −12.94695023389814831344800474278, −11.55605055891434179671794522189, −10.69147219710645935395520467058, −9.442826644892447525958192384693, −8.56505011609572060778753088929, −7.34738175701374482951665671018, −5.875908508300983552243493769776, −5.21470124209367148637332741911, −3.89494024568583695554646520085, −1.17281996945259077238982087157,
0.0153469610684350823508666214, 1.64941620728516535832167022421, 3.016013943870540628787702038792, 4.49561010697919349156958302790, 6.25059418844430197505759958551, 7.35947514288893167692594246977, 8.2080367283306414187993443547, 9.95095481538448514412793896338, 10.84293592205557538734386470969, 11.48089482464603138251997471865, 12.65359478183981654284183521770, 13.459553959668362302730352183663, 15.23235505593884496822919056985, 16.291910788388859445067204415153, 17.60303275133807313715037991441, 18.11198216365272834919561288326, 18.98691466235289817355191657386, 19.86543882687343352683548578188, 21.184690251464288897489601795193, 22.18373580774406792591756888914, 22.9916691483637405424770232046, 23.8363999680244467713957888224, 25.45409147184122635772199477804, 26.12731523481282648743193440250, 27.26857758604590019847177089659