L(s) = 1 | + (−0.707 + 0.707i)3-s − 7-s − i·9-s + (0.707 − 0.707i)11-s + (0.707 − 0.707i)13-s − i·17-s + (0.707 + 0.707i)19-s + (0.707 − 0.707i)21-s − 23-s + (0.707 + 0.707i)27-s + (−0.707 − 0.707i)29-s + 31-s + i·33-s + (0.707 + 0.707i)37-s − i·39-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)3-s − 7-s − i·9-s + (0.707 − 0.707i)11-s + (0.707 − 0.707i)13-s − i·17-s + (0.707 + 0.707i)19-s + (0.707 − 0.707i)21-s − 23-s + (0.707 + 0.707i)27-s + (−0.707 − 0.707i)29-s + 31-s + i·33-s + (0.707 + 0.707i)37-s − i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.681 + 0.731i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.681 + 0.731i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.115949172 + 0.4856051922i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.115949172 + 0.4856051922i\) |
\(L(1)\) |
\(\approx\) |
\(0.8422766317 + 0.1754719510i\) |
\(L(1)\) |
\(\approx\) |
\(0.8422766317 + 0.1754719510i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + (0.707 - 0.707i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (0.707 + 0.707i)T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 + (-0.707 - 0.707i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.707 + 0.707i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 + (0.707 + 0.707i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.707 + 0.707i)T \) |
| 59 | \( 1 + (0.707 - 0.707i)T \) |
| 61 | \( 1 + (0.707 + 0.707i)T \) |
| 67 | \( 1 + (0.707 - 0.707i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (0.707 - 0.707i)T \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.77528022433690495039048996447, −26.3248997109346932465375789965, −25.42564627468460115053659611454, −24.50772114545994777673729712145, −23.46465166720047397967414141163, −22.61162142689524535025186599996, −21.98658466621505004203363803304, −20.38783565283618083126895554544, −19.45316169667034029703230723349, −18.49848574959288570503295770778, −17.63115067048537942979055217849, −16.48193073874636508109260955550, −15.80036786401894708920110949609, −14.10377907892873725419803687268, −13.258398227949049256618709380084, −12.15721848590638007891682293837, −11.42313325213142301057193349258, −10.0209713742836192582605107700, −8.9570018044254935231063752469, −7.26980064439488763239418283870, −6.63133713562121059970851551231, −5.4523437183075637679474471298, −3.96482913978465783718288693727, −2.26227731571864012450127687194, −0.70971676612110625995111837064,
0.90810064241052799065378924246, 3.25753194418786570519622725135, 4.118193115025672716042126791832, 5.88712151576391223592351498351, 6.25991340408384533918838973340, 8.118404788203705450433413397136, 9.45018314202338024561102820858, 10.2630884121016177488882037533, 11.364883453870648733982502707937, 12.38737354314522257536152801332, 13.53791404171064591342090566805, 14.90234826955453397165486596438, 15.95149804787243933375480096436, 16.59228618827960800283443575789, 17.63802675067153221687752334154, 18.80329895176410266731239501059, 19.90623072040071038284313842111, 20.97171753139354403738672663537, 22.08451781373504026726841285418, 22.61801108747002156897099071409, 23.60322928732066860921989119781, 24.79983189060782144406689881457, 25.98012476140491523268441605939, 26.7449404236772707270584139574, 27.83195525198550696163545926709