L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + (−0.866 + 0.5i)5-s + i·6-s + 8-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)10-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)12-s + 15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)18-s + (−0.5 − 0.866i)19-s − i·20-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + (−0.866 + 0.5i)5-s + i·6-s + 8-s + (0.5 + 0.866i)9-s + (0.866 + 0.5i)10-s + (−0.866 − 0.5i)11-s + (0.866 − 0.5i)12-s + 15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)18-s + (−0.5 − 0.866i)19-s − i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1547 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.564 - 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1437534610 - 0.2723688723i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1437534610 - 0.2723688723i\) |
\(L(1)\) |
\(\approx\) |
\(0.3985751463 - 0.1748968883i\) |
\(L(1)\) |
\(\approx\) |
\(0.3985751463 - 0.1748968883i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + iT \) |
| 31 | \( 1 + (0.866 + 0.5i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.866 + 0.5i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.866 + 0.5i)T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.678708143117522936603471747083, −20.12778594421170538196252970440, −18.946322966001027606017080155191, −18.5594745239183212717424692091, −17.57236166638797313712656360849, −16.98587322016441186522506436876, −16.341561240520615423521200247339, −15.50402611131665748985823081134, −15.39874135377722661975126930985, −14.318486864201059503128055878084, −13.22457142841098308956258027581, −12.35144381160405628746538459404, −11.70585306894577562754554491826, −10.56857228210504511915838659719, −10.20665130837353861116416758296, −9.25283394429259711127472982686, −8.315817043013363702377056161890, −7.71707157724506956240583736023, −6.81227535404071922679904890933, −5.92719945125071564716781511460, −5.18509307816103033938535853889, −4.42858744781941038062590691388, −3.783915067829660737420099002561, −1.99018233305958504855946329080, −0.637859946540043574412336806185,
0.27326851671928299625919885716, 1.435181213139187800104554956147, 2.56818120873024571092483941468, 3.33180199982441820222262112454, 4.44215299884003799023108563874, 5.15561150915502292665985537872, 6.42867600279381995159862971324, 7.20092236696757113953886722644, 7.98826484609156416801572642045, 8.5557667800457875442311512194, 9.86427188970310701185790956693, 10.69666060490181901759054107308, 11.02935437156490435500576976920, 11.893995615775567263473864473809, 12.37729405694632906973196880591, 13.30829802027911008798509849461, 13.89037030987167086176824200381, 15.25916866436700993969724410441, 16.03489740078952637707112604117, 16.65098918563872014926714918712, 17.62697560657772521026314318352, 18.19097171736253259948914636030, 18.74668711856899096311399738615, 19.50387993102706066717668985377, 19.95582039347575295629643560825