L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (−0.258 − 0.965i)5-s + (−0.258 + 0.965i)7-s − i·8-s + (−0.707 − 0.707i)10-s + (0.258 − 0.965i)11-s + (0.5 − 0.866i)13-s + (0.258 + 0.965i)14-s + (−0.5 − 0.866i)16-s + i·19-s + (−0.965 − 0.258i)20-s + (−0.258 − 0.965i)22-s + (−0.965 + 0.258i)23-s + (−0.866 + 0.5i)25-s − i·26-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.5 − 0.866i)4-s + (−0.258 − 0.965i)5-s + (−0.258 + 0.965i)7-s − i·8-s + (−0.707 − 0.707i)10-s + (0.258 − 0.965i)11-s + (0.5 − 0.866i)13-s + (0.258 + 0.965i)14-s + (−0.5 − 0.866i)16-s + i·19-s + (−0.965 − 0.258i)20-s + (−0.258 − 0.965i)22-s + (−0.965 + 0.258i)23-s + (−0.866 + 0.5i)25-s − i·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0407 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0407 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.206367435 - 1.158199078i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.206367435 - 1.158199078i\) |
\(L(1)\) |
\(\approx\) |
\(1.362414686 - 0.7368763967i\) |
\(L(1)\) |
\(\approx\) |
\(1.362414686 - 0.7368763967i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (-0.258 - 0.965i)T \) |
| 7 | \( 1 + (-0.258 + 0.965i)T \) |
| 11 | \( 1 + (0.258 - 0.965i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 + (-0.965 + 0.258i)T \) |
| 29 | \( 1 + (0.965 + 0.258i)T \) |
| 31 | \( 1 + (0.258 + 0.965i)T \) |
| 37 | \( 1 + (0.707 - 0.707i)T \) |
| 41 | \( 1 + (0.965 - 0.258i)T \) |
| 43 | \( 1 + (-0.866 + 0.5i)T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (-0.258 + 0.965i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.707 - 0.707i)T \) |
| 73 | \( 1 + (-0.707 + 0.707i)T \) |
| 79 | \( 1 + (0.258 - 0.965i)T \) |
| 83 | \( 1 + (0.866 - 0.5i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.965 + 0.258i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.341037705971082722251238095751, −26.82535537183694745572984838030, −26.14254137702780792913685093332, −25.471730909102230172720005020252, −24.00953723471003920733976571900, −23.32040249539577268883359659571, −22.55013709742237488666853300578, −21.67078695482391373840501613775, −20.43189547006438245657724260012, −19.56347403267101857295889602900, −18.1025277191271208085936173623, −17.111262902054462296430242955792, −16.01542773885205166880680083256, −15.061939819751728128365234532520, −14.10367750043611160292885952950, −13.34897709318028407049848117823, −11.96271832372575646612384716927, −11.06386525431447401346019739391, −9.81128082026742737627550992605, −8.029368297023954176897560890156, −6.94037114362795781919355484464, −6.40531290680219406447877715831, −4.5410424592011586477878248607, −3.745166766300942638229131423399, −2.32495062425189893510341452636,
1.25153371554648601017404551353, 2.9069581731389716363773043261, 4.071696806763438139579651654666, 5.48312281389038818116960420292, 6.09047768609382550300610567463, 8.08078524133850262112135156568, 9.14998836954815073166275213005, 10.46521144752427094434275056524, 11.768534326933818649530748124235, 12.42794149178951671133138745373, 13.378475687343655540471041803933, 14.50780853194626530052824223416, 15.80753365319148961223711186409, 16.24605625094344565680219222026, 18.01285959934843169190471162892, 19.186225634890112216092864506445, 19.961134050563004166506867881398, 21.041253239237509200462937087809, 21.74635438078852741162623418813, 22.833142515013807886716592648029, 23.77635566986236462732275825069, 24.78930569699577781765934144129, 25.27688158590529824961856767079, 27.186673973838139136198863746610, 28.01582116967432153991072574623