L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.5i)4-s + (−0.608 − 0.793i)5-s + (0.608 − 0.793i)7-s + (0.707 + 0.707i)8-s + (−0.382 − 0.923i)10-s + (0.793 + 0.608i)11-s + (−0.866 − 0.5i)13-s + (0.793 − 0.608i)14-s + (0.5 + 0.866i)16-s + (0.707 − 0.707i)19-s + (−0.130 − 0.991i)20-s + (0.608 + 0.793i)22-s + (−0.130 + 0.991i)23-s + (−0.258 + 0.965i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
L(s) = 1 | + (0.965 + 0.258i)2-s + (0.866 + 0.5i)4-s + (−0.608 − 0.793i)5-s + (0.608 − 0.793i)7-s + (0.707 + 0.707i)8-s + (−0.382 − 0.923i)10-s + (0.793 + 0.608i)11-s + (−0.866 − 0.5i)13-s + (0.793 − 0.608i)14-s + (0.5 + 0.866i)16-s + (0.707 − 0.707i)19-s + (−0.130 − 0.991i)20-s + (0.608 + 0.793i)22-s + (−0.130 + 0.991i)23-s + (−0.258 + 0.965i)25-s + (−0.707 − 0.707i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0524i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0524i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.892746454 - 0.04963967992i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.892746454 - 0.04963967992i\) |
\(L(1)\) |
\(\approx\) |
\(1.719164702 + 0.02322649849i\) |
\(L(1)\) |
\(\approx\) |
\(1.719164702 + 0.02322649849i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 5 | \( 1 + (-0.608 - 0.793i)T \) |
| 7 | \( 1 + (0.608 - 0.793i)T \) |
| 11 | \( 1 + (0.793 + 0.608i)T \) |
| 13 | \( 1 + (-0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.707 - 0.707i)T \) |
| 23 | \( 1 + (-0.130 + 0.991i)T \) |
| 29 | \( 1 + (-0.991 + 0.130i)T \) |
| 31 | \( 1 + (-0.793 + 0.608i)T \) |
| 37 | \( 1 + (-0.923 - 0.382i)T \) |
| 41 | \( 1 + (0.991 + 0.130i)T \) |
| 43 | \( 1 + (0.258 - 0.965i)T \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.707 + 0.707i)T \) |
| 59 | \( 1 + (-0.965 + 0.258i)T \) |
| 61 | \( 1 + (-0.608 + 0.793i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.923 + 0.382i)T \) |
| 73 | \( 1 + (0.382 - 0.923i)T \) |
| 79 | \( 1 + (-0.793 - 0.608i)T \) |
| 83 | \( 1 + (-0.965 - 0.258i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (0.991 - 0.130i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.0471060552533545150201461930, −27.17206167562399693826988626528, −26.012392294914535743183101021489, −24.49970733569007617179147779082, −24.337440075801460371486163602476, −22.8268904456344359477842440609, −22.2141137198530774592720913844, −21.39772920481707034804974228231, −20.20945141248855433204637934623, −19.156191688794401557504829428091, −18.455371441115928925314371843692, −16.763120083582548463701127032946, −15.66732395759608752992478110235, −14.514394319244717249957518720749, −14.3129087540426886791079455916, −12.55550338085196633903377128703, −11.67606203060639816120425671305, −11.05331729986405319613981358617, −9.59952171685145576302786565549, −7.96592440276973821277775056287, −6.78700983193952210881554193469, −5.67634135369152811870515151170, −4.353151386583377251958355469106, −3.200516664282943840399173275557, −1.949153501974844449748544472168,
1.595156082277204614763387968412, 3.50681417015983469530627311512, 4.53268475920231481782954536315, 5.37482104307194032081928219160, 7.18018382841953006223443870928, 7.70722771788036653379175891338, 9.27621647540461816853304376550, 10.92258757517762678020273777823, 11.89640491052029678093738542457, 12.73916835674180835003637278763, 13.875202622401150210550399843162, 14.84985484314678992556833695182, 15.79613366590109988257960876053, 16.92944010905464834698271421067, 17.567242486335540310718185163523, 19.76395563405594536346681271985, 20.05629557875576818881243265835, 21.116694418443789081404043330895, 22.29760579756160613345770640428, 23.16829433142092456464903106573, 24.15236264223298291831063559158, 24.627971951361781977189639116253, 25.853395627990536105677997582346, 27.08278556194079976733262420749, 27.92295690842825786798446551591