L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.766 − 0.642i)5-s + (0.5 + 0.866i)7-s + (−0.939 − 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.173 − 0.984i)13-s + (−0.766 + 0.642i)15-s + (−0.939 + 0.342i)17-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)23-s + (0.173 + 0.984i)25-s + (−0.5 + 0.866i)27-s + (0.939 + 0.342i)29-s + (0.5 + 0.866i)31-s + (0.766 + 0.642i)33-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.766 − 0.642i)5-s + (0.5 + 0.866i)7-s + (−0.939 − 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.173 − 0.984i)13-s + (−0.766 + 0.642i)15-s + (−0.939 + 0.342i)17-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)23-s + (0.173 + 0.984i)25-s + (−0.5 + 0.866i)27-s + (0.939 + 0.342i)29-s + (0.5 + 0.866i)31-s + (0.766 + 0.642i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.189 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.189 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2414839419 + 0.2924522296i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2414839419 + 0.2924522296i\) |
\(L(1)\) |
\(\approx\) |
\(0.7527305401 - 0.1624283731i\) |
\(L(1)\) |
\(\approx\) |
\(0.7527305401 - 0.1624283731i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.173 - 0.984i)T \) |
| 5 | \( 1 + (-0.766 - 0.642i)T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.173 - 0.984i)T \) |
| 17 | \( 1 + (-0.939 + 0.342i)T \) |
| 23 | \( 1 + (-0.766 + 0.642i)T \) |
| 29 | \( 1 + (0.939 + 0.342i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (0.173 - 0.984i)T \) |
| 43 | \( 1 + (0.766 + 0.642i)T \) |
| 47 | \( 1 + (0.939 + 0.342i)T \) |
| 53 | \( 1 + (-0.766 + 0.642i)T \) |
| 59 | \( 1 + (-0.939 + 0.342i)T \) |
| 61 | \( 1 + (-0.766 + 0.642i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.766 - 0.642i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (-0.173 + 0.984i)T \) |
| 83 | \( 1 + (-0.5 - 0.866i)T \) |
| 89 | \( 1 + (0.173 + 0.984i)T \) |
| 97 | \( 1 + (-0.939 + 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.18625393788964467353840382494, −26.59156718220474422383133605259, −26.147642148507634109802475013602, −24.40426291241873758535239935307, −23.53574003191404549639461092281, −22.52778117413857845415380106147, −21.61663787259046363379963851001, −20.6208069526124004627803105299, −19.71859283786282459060107753394, −18.71553694113191686026442016650, −17.35783563683054840707737441215, −16.26050946756280903020135604803, −15.55249725932459919411021053472, −14.33601819410455190851620782384, −13.740658194793680770364366028848, −11.74075076755591010989233770301, −10.98841700723072831832882599759, −10.17844512938926349663686283886, −8.7212045586243679600149248609, −7.74632052093046980671132362028, −6.40248760609674966422640528328, −4.66893513315291160746615445157, −3.92837097496660801185203554547, −2.60213632332952489919313630657, −0.13712223536970023163915134475,
1.55105761303832767313984066087, 2.85729215636474106476644348333, 4.64951442008884194680631694855, 5.79932299640629812792895854935, 7.336933399940095682474982335997, 8.16008776577777340915967889696, 9.0211350055999041496902985375, 10.795722796816796772658038377554, 12.23664563436543407936602620755, 12.40845767479779397028022768506, 13.7415043498008068993277916850, 15.126114874615758014160634773215, 15.7455577954289168449330362857, 17.51175635399745248618879950380, 17.95673325391407370955332903571, 19.25881676122127366095728946839, 19.99926766478130158451298948639, 20.90987651627703145998092641224, 22.38292653228089672298947338846, 23.39687009976529636157706932019, 24.223385856791769924152671875604, 24.9559972517268797074835586691, 25.862985305685700873323758273247, 27.27748467122428010710584590274, 28.188702894326166462834254312456