L(s) = 1 | + (−0.365 − 0.930i)3-s + (−0.988 − 0.149i)5-s + (−0.733 + 0.680i)9-s + (0.733 + 0.680i)11-s + (−0.222 + 0.974i)13-s + (0.222 + 0.974i)15-s + (0.0747 − 0.997i)17-s + (0.5 + 0.866i)19-s + (−0.0747 − 0.997i)23-s + (0.955 + 0.294i)25-s + (0.900 + 0.433i)27-s + (−0.900 + 0.433i)29-s + (0.5 − 0.866i)31-s + (0.365 − 0.930i)33-s + (0.826 + 0.563i)37-s + ⋯ |
L(s) = 1 | + (−0.365 − 0.930i)3-s + (−0.988 − 0.149i)5-s + (−0.733 + 0.680i)9-s + (0.733 + 0.680i)11-s + (−0.222 + 0.974i)13-s + (0.222 + 0.974i)15-s + (0.0747 − 0.997i)17-s + (0.5 + 0.866i)19-s + (−0.0747 − 0.997i)23-s + (0.955 + 0.294i)25-s + (0.900 + 0.433i)27-s + (−0.900 + 0.433i)29-s + (0.5 − 0.866i)31-s + (0.365 − 0.930i)33-s + (0.826 + 0.563i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.891 - 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.891 - 0.453i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.166110966 - 0.2792996129i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.166110966 - 0.2792996129i\) |
\(L(1)\) |
\(\approx\) |
\(0.8273001503 - 0.1811840721i\) |
\(L(1)\) |
\(\approx\) |
\(0.8273001503 - 0.1811840721i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.365 - 0.930i)T \) |
| 5 | \( 1 + (-0.988 - 0.149i)T \) |
| 11 | \( 1 + (0.733 + 0.680i)T \) |
| 13 | \( 1 + (-0.222 + 0.974i)T \) |
| 17 | \( 1 + (0.0747 - 0.997i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.0747 - 0.997i)T \) |
| 29 | \( 1 + (-0.900 + 0.433i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.826 + 0.563i)T \) |
| 41 | \( 1 + (0.623 - 0.781i)T \) |
| 43 | \( 1 + (-0.623 - 0.781i)T \) |
| 47 | \( 1 + (-0.955 + 0.294i)T \) |
| 53 | \( 1 + (0.826 - 0.563i)T \) |
| 59 | \( 1 + (0.988 - 0.149i)T \) |
| 61 | \( 1 + (0.826 + 0.563i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.900 + 0.433i)T \) |
| 73 | \( 1 + (0.955 + 0.294i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.222 + 0.974i)T \) |
| 89 | \( 1 + (-0.733 + 0.680i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.854116734570365902136585790777, −26.259459491798742158075870630260, −24.88505771390736647047053128482, −23.78837070077820784163022561487, −22.928127654144071507105680380513, −22.09609355923404520719626241778, −21.30284726203822986180787469048, −19.9208240231943327494822827188, −19.543483351803390759925153856857, −18.00641523093752053678638974681, −17.02668547064937016028588214622, −16.069863030313316844059517321577, −15.25731686656675998680149435169, −14.50911728893069806970291104953, −12.96965849875302568722524920057, −11.66704261898831851709783459907, −11.13102558818373547582542425246, −9.98285013149463943373181172958, −8.82245581906435456580961076274, −7.771235351826238195627474086825, −6.32557510733513289891572074432, −5.15932969591582036108609231939, −3.92514416377923000002622706144, −3.14153171876136634477530421573, −0.696246239103063253262169218120,
0.788050295360059478872826843198, 2.22057845428618504780341460071, 3.89581752766682015354723422932, 5.08684717036891920756716772257, 6.61142329061024482658193737169, 7.333131600809075745697537244295, 8.37067683209800695761469118979, 9.63792665956622722497103529104, 11.284564307696426683231127796012, 11.89192957808369703523861666698, 12.6633390835132228555103401599, 13.984332232993354483826659726389, 14.85900697921954969625071863237, 16.32269994633851720639606160, 16.88872476176403383089037123533, 18.26110820349522396899099686949, 18.908004527788675804401565731192, 19.87560895891210010441722041556, 20.68277740332758623334998884846, 22.464571381334426101752806660179, 22.79371841394973892263046571402, 23.979940923833741280576647706191, 24.52810913700428918724512040668, 25.565877109545908060699282399989, 26.787059848812427112985918208956