L(s) = 1 | + (0.222 − 0.974i)3-s + (−0.222 + 0.974i)5-s + (−0.900 − 0.433i)9-s + (0.900 − 0.433i)11-s + (−0.900 + 0.433i)13-s + (0.900 + 0.433i)15-s + (0.623 + 0.781i)17-s − 19-s + (−0.623 + 0.781i)23-s + (−0.900 − 0.433i)25-s + (−0.623 + 0.781i)27-s + (0.623 + 0.781i)29-s − 31-s + (−0.222 − 0.974i)33-s + (0.623 + 0.781i)37-s + ⋯ |
L(s) = 1 | + (0.222 − 0.974i)3-s + (−0.222 + 0.974i)5-s + (−0.900 − 0.433i)9-s + (0.900 − 0.433i)11-s + (−0.900 + 0.433i)13-s + (0.900 + 0.433i)15-s + (0.623 + 0.781i)17-s − 19-s + (−0.623 + 0.781i)23-s + (−0.900 − 0.433i)25-s + (−0.623 + 0.781i)27-s + (0.623 + 0.781i)29-s − 31-s + (−0.222 − 0.974i)33-s + (0.623 + 0.781i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0320 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0320 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7639471199 + 0.7398415281i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7639471199 + 0.7398415281i\) |
\(L(1)\) |
\(\approx\) |
\(0.9458814049 + 0.02511800747i\) |
\(L(1)\) |
\(\approx\) |
\(0.9458814049 + 0.02511800747i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.222 - 0.974i)T \) |
| 5 | \( 1 + (-0.222 + 0.974i)T \) |
| 11 | \( 1 + (0.900 - 0.433i)T \) |
| 13 | \( 1 + (-0.900 + 0.433i)T \) |
| 17 | \( 1 + (0.623 + 0.781i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.623 + 0.781i)T \) |
| 29 | \( 1 + (0.623 + 0.781i)T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 + (0.623 + 0.781i)T \) |
| 41 | \( 1 + (-0.222 + 0.974i)T \) |
| 43 | \( 1 + (0.222 + 0.974i)T \) |
| 47 | \( 1 + (0.900 - 0.433i)T \) |
| 53 | \( 1 + (0.623 - 0.781i)T \) |
| 59 | \( 1 + (0.222 + 0.974i)T \) |
| 61 | \( 1 + (0.623 + 0.781i)T \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 + (-0.623 + 0.781i)T \) |
| 73 | \( 1 + (-0.900 - 0.433i)T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + (0.900 + 0.433i)T \) |
| 89 | \( 1 + (-0.900 - 0.433i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.77110430004551715462881467795, −25.393092871983829198326253092996, −24.90418768605716299152971245240, −23.62295301200006491186196149570, −22.57519507152124780802744986787, −21.736621810971199797189937888615, −20.64727900287939948659016476462, −20.08404737507163829997483982917, −19.16762405068996700308858898908, −17.44547114828692549642679670394, −16.7962981439818275873796576794, −15.901820432832888145870605586779, −14.88908907132379169045359369533, −14.0401791673425832098270692842, −12.56931926815777159191361348312, −11.80385449121003794271577580830, −10.41904929433207296487221469278, −9.46470253633031354967601355062, −8.67080323284830556359229126455, −7.494724167571243537244897430535, −5.77567844642219149193270900988, −4.68085281495467483653604439315, −3.90364913086243538829542984407, −2.29471667601366701627696372666, −0.35090145303666559033355616527,
1.515028309895339630602242430664, 2.77758250890859630284185744323, 3.949658006865311010893229965916, 5.90252534011268796210590217387, 6.757815177086381190891542365689, 7.66428135818820522763236033070, 8.77306519591093918127537670924, 10.1208750199834887663059319267, 11.403561112455636974273482513516, 12.1309156184104163080103079522, 13.31713915841279976283701739743, 14.529797604090277447606296579644, 14.77231605108332956970748532526, 16.55119815316824504722775650817, 17.50097954627331636218927277593, 18.47266522065953139628512909705, 19.408493172568692643101698327910, 19.762507007734058517608632530207, 21.50089678893082695022285179904, 22.22914184108165882165133511302, 23.44629858851963301830730942921, 23.97593558798327128163092590390, 25.22767119341870978223035806744, 25.84059688548309949976709082835, 26.89942281544891363053895392440