L(s) = 1 | + (−0.0747 − 0.997i)3-s + (0.826 − 0.563i)5-s + (−0.988 + 0.149i)9-s + (0.988 + 0.149i)11-s + (0.623 − 0.781i)13-s + (−0.623 − 0.781i)15-s + (0.955 − 0.294i)17-s + (0.5 − 0.866i)19-s + (−0.955 − 0.294i)23-s + (0.365 − 0.930i)25-s + (0.222 + 0.974i)27-s + (−0.222 + 0.974i)29-s + (0.5 + 0.866i)31-s + (0.0747 − 0.997i)33-s + (−0.733 − 0.680i)37-s + ⋯ |
L(s) = 1 | + (−0.0747 − 0.997i)3-s + (0.826 − 0.563i)5-s + (−0.988 + 0.149i)9-s + (0.988 + 0.149i)11-s + (0.623 − 0.781i)13-s + (−0.623 − 0.781i)15-s + (0.955 − 0.294i)17-s + (0.5 − 0.866i)19-s + (−0.955 − 0.294i)23-s + (0.365 − 0.930i)25-s + (0.222 + 0.974i)27-s + (−0.222 + 0.974i)29-s + (0.5 + 0.866i)31-s + (0.0747 − 0.997i)33-s + (−0.733 − 0.680i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.424 - 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.424 - 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.144165933 - 1.799514913i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.144165933 - 1.799514913i\) |
\(L(1)\) |
\(\approx\) |
\(1.118785383 - 0.6564273851i\) |
\(L(1)\) |
\(\approx\) |
\(1.118785383 - 0.6564273851i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.0747 - 0.997i)T \) |
| 5 | \( 1 + (0.826 - 0.563i)T \) |
| 11 | \( 1 + (0.988 + 0.149i)T \) |
| 13 | \( 1 + (0.623 - 0.781i)T \) |
| 17 | \( 1 + (0.955 - 0.294i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.955 - 0.294i)T \) |
| 29 | \( 1 + (-0.222 + 0.974i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.733 - 0.680i)T \) |
| 41 | \( 1 + (-0.900 - 0.433i)T \) |
| 43 | \( 1 + (0.900 - 0.433i)T \) |
| 47 | \( 1 + (-0.365 - 0.930i)T \) |
| 53 | \( 1 + (-0.733 + 0.680i)T \) |
| 59 | \( 1 + (-0.826 - 0.563i)T \) |
| 61 | \( 1 + (-0.733 - 0.680i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.222 + 0.974i)T \) |
| 73 | \( 1 + (0.365 - 0.930i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.623 - 0.781i)T \) |
| 89 | \( 1 + (-0.988 + 0.149i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.03291705706978524724452362494, −26.03673559265656132444535561001, −25.51284956183013439948549884718, −24.27956235925706370560607200866, −22.87279392843152535417330229865, −22.30162725977791414022362772385, −21.29513706901895724210689330651, −20.751891993028544320947821525327, −19.39480929050719727421511912566, −18.38204142017155929090968744803, −17.161539889300036878638516966737, −16.56907867745944470337490381509, −15.36244395522496985708722544252, −14.28122535106552765387601866993, −13.82156044676035430077928372236, −12.01438941079408619238312231001, −11.13975177542918727076945106392, −9.942467583036685311380195576140, −9.449294531447597182768844207, −8.098048379849776937730137653621, −6.37905954018625129223059991792, −5.72554068851118908041107703211, −4.18823754629617860368555972496, −3.22455300370286750981432905180, −1.59749306007858039469304630001,
0.79521349539781435544600275784, 1.78450628076853519649819856949, 3.26604665520941521758101156949, 5.12042698939608653707812124912, 6.046695494176732306656418171736, 7.08544432147768077402958332835, 8.363911925504368894262874460906, 9.26315838712043775635523289036, 10.57331459738187452264557276730, 11.95152880171762289531238239016, 12.63714781556668352277517746825, 13.7404313161017888909339320735, 14.321965947927204688252988185159, 15.95096408245989203571037787450, 17.06958006039089499462010563563, 17.755104707070710875111922293305, 18.60153072645719724665392570421, 19.87283212688474390995615234598, 20.46846823996178613497374814684, 21.79880902931731697013350422182, 22.715693848834131651561381658267, 23.75814978494422386575096045350, 24.70320515320264757254414784565, 25.26790441650116930550686737271, 26.09561265849020310233814006001