L(s) = 1 | + (0.733 − 0.680i)3-s + (0.955 + 0.294i)5-s + (0.0747 − 0.997i)9-s + (−0.0747 − 0.997i)11-s + (−0.900 − 0.433i)13-s + (0.900 − 0.433i)15-s + (−0.988 − 0.149i)17-s + (0.5 − 0.866i)19-s + (0.988 − 0.149i)23-s + (0.826 + 0.563i)25-s + (−0.623 − 0.781i)27-s + (0.623 − 0.781i)29-s + (0.5 + 0.866i)31-s + (−0.733 − 0.680i)33-s + (0.365 + 0.930i)37-s + ⋯ |
L(s) = 1 | + (0.733 − 0.680i)3-s + (0.955 + 0.294i)5-s + (0.0747 − 0.997i)9-s + (−0.0747 − 0.997i)11-s + (−0.900 − 0.433i)13-s + (0.900 − 0.433i)15-s + (−0.988 − 0.149i)17-s + (0.5 − 0.866i)19-s + (0.988 − 0.149i)23-s + (0.826 + 0.563i)25-s + (−0.623 − 0.781i)27-s + (0.623 − 0.781i)29-s + (0.5 + 0.866i)31-s + (−0.733 − 0.680i)33-s + (0.365 + 0.930i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0320 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0320 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.868674333 - 1.809710173i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.868674333 - 1.809710173i\) |
\(L(1)\) |
\(\approx\) |
\(1.436661540 - 0.5670076693i\) |
\(L(1)\) |
\(\approx\) |
\(1.436661540 - 0.5670076693i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.733 - 0.680i)T \) |
| 5 | \( 1 + (0.955 + 0.294i)T \) |
| 11 | \( 1 + (-0.0747 - 0.997i)T \) |
| 13 | \( 1 + (-0.900 - 0.433i)T \) |
| 17 | \( 1 + (-0.988 - 0.149i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.988 - 0.149i)T \) |
| 29 | \( 1 + (0.623 - 0.781i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (0.365 + 0.930i)T \) |
| 41 | \( 1 + (-0.222 - 0.974i)T \) |
| 43 | \( 1 + (0.222 - 0.974i)T \) |
| 47 | \( 1 + (-0.826 + 0.563i)T \) |
| 53 | \( 1 + (0.365 - 0.930i)T \) |
| 59 | \( 1 + (-0.955 + 0.294i)T \) |
| 61 | \( 1 + (0.365 + 0.930i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.623 - 0.781i)T \) |
| 73 | \( 1 + (0.826 + 0.563i)T \) |
| 79 | \( 1 + (0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.900 - 0.433i)T \) |
| 89 | \( 1 + (0.0747 - 0.997i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−26.765494976054592706916165226834, −26.108765983547399699496224927536, −25.02443657134147877057501383476, −24.62071172442788690567881291447, −23.00699028269951831566869338453, −21.971559723461335306268756224, −21.27322579059675894725148703621, −20.35950375113051705440647427543, −19.62408009199064338503189854597, −18.28306800232461882992851326987, −17.23513406288797997512347156059, −16.37158353343906535960526484425, −15.144870279735067459968664513592, −14.402588819833973004106109847256, −13.40657249972901879712474137952, −12.43608116018026795438685458013, −10.86894303839565387963645220038, −9.73242167292922856422831257802, −9.31876023463218128667693525947, −7.99984415831730036811384385022, −6.7247303209863060624262848623, −5.173901449935731135864903597800, −4.38067984108830967020121507921, −2.75117753978303258728492852870, −1.75240806779827613440147869324,
0.813139909284623345149747165569, 2.3580045425302886450955766806, 3.111700544013634434968839662415, 4.99965250181824707086202329061, 6.33525438724190734712425105847, 7.17641716449742697756765443298, 8.51595339523109717847017816893, 9.35102132584066501768024474315, 10.520538772849798037539683598997, 11.81094247895112456828678180109, 13.15213673404593813908060840351, 13.645504098404661522517984989299, 14.6221131782625385896528381778, 15.64194975187990325934508164178, 17.21073231446941189756865477144, 17.854077271726110976362382283169, 18.90804384201568740389032650439, 19.70102160305605486039843681719, 20.78311829897036581804093990881, 21.69960031220947694489326920684, 22.61633785233617788803217486738, 24.07296240483551481255846565067, 24.65014327661099987686587549376, 25.45525711721110075231062177981, 26.48758156470736151976248762023