L(s) = 1 | + (0.984 − 0.173i)3-s + (−0.642 − 0.766i)7-s + (0.939 − 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.342 + 0.939i)13-s + (0.342 + 0.939i)17-s + (0.173 + 0.984i)19-s + (−0.766 − 0.642i)21-s + (−0.866 + 0.5i)23-s + (0.866 − 0.5i)27-s + (0.5 − 0.866i)29-s + 31-s + (−0.342 + 0.939i)33-s + (−0.173 + 0.984i)39-s + (−0.939 − 0.342i)41-s + ⋯ |
L(s) = 1 | + (0.984 − 0.173i)3-s + (−0.642 − 0.766i)7-s + (0.939 − 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.342 + 0.939i)13-s + (0.342 + 0.939i)17-s + (0.173 + 0.984i)19-s + (−0.766 − 0.642i)21-s + (−0.866 + 0.5i)23-s + (0.866 − 0.5i)27-s + (0.5 − 0.866i)29-s + 31-s + (−0.342 + 0.939i)33-s + (−0.173 + 0.984i)39-s + (−0.939 − 0.342i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.446 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.446 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.473873638 + 0.9112503747i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.473873638 + 0.9112503747i\) |
\(L(1)\) |
\(\approx\) |
\(1.284272893 + 0.1413202037i\) |
\(L(1)\) |
\(\approx\) |
\(1.284272893 + 0.1413202037i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.984 - 0.173i)T \) |
| 7 | \( 1 + (-0.642 - 0.766i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.342 + 0.939i)T \) |
| 17 | \( 1 + (0.342 + 0.939i)T \) |
| 19 | \( 1 + (0.173 + 0.984i)T \) |
| 23 | \( 1 + (-0.866 + 0.5i)T \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + T \) |
| 41 | \( 1 + (-0.939 - 0.342i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.642 + 0.766i)T \) |
| 59 | \( 1 + (0.766 + 0.642i)T \) |
| 61 | \( 1 + (-0.939 - 0.342i)T \) |
| 67 | \( 1 + (0.642 + 0.766i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (-0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.342 + 0.939i)T \) |
| 89 | \( 1 + (0.766 + 0.642i)T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.36201939231103554571600914327, −19.882036128414561842749246606101, −19.02294634234029062867554229183, −18.487567383497951736075563452237, −17.74456579477936379738083560644, −16.461948714316804605334880154510, −15.82737173308429564310581525829, −15.40135752600400938495862828727, −14.45166639784228991680820581719, −13.70336622598453112384586812520, −13.05188671422386951603053754804, −12.30182227941289529535201259903, −11.36565765246012679838538438578, −10.193990950751402743032260269980, −9.82261448784428496381270914942, −8.720292574533804535557853236378, −8.362809945445682932372804405220, −7.36515253379314257851968207038, −6.4888663526084860629080574621, −5.403903465750615753331289864271, −4.724409783219991556682385053241, −3.2551643773198044877492340301, −3.02446562087504295688537633312, −2.11321169159246141699155766861, −0.56044289263166018931853247674,
1.34005857387022714442895695773, 2.12739209491902374478424675675, 3.1704144381782528356147854834, 4.00746839540653100648331011631, 4.62113003906112543523157329219, 6.10782524301816383144622986062, 6.80327571248138503087565317791, 7.74277201401349434560033850027, 8.13144658996297841597610659167, 9.40583130772243026685797638388, 9.918788925524952128502211070636, 10.45982326641511687484025156828, 11.900728941941878434957320967266, 12.49879645582354391449730844627, 13.33763529169372227014017497611, 13.95344394302786352817998549257, 14.64324234642259775589769415281, 15.46674480857121079523370267837, 16.18376524425894811597913377982, 17.03098727576755976697202683015, 17.8469934217632614794400938051, 18.79147681557081999785513884323, 19.39175875434509395523683178458, 19.92084544661015217225775281865, 20.80498869401103621796675341447