L(s) = 1 | + (−0.342 + 0.939i)3-s + (−0.984 + 0.173i)7-s + (−0.766 − 0.642i)9-s + (−0.5 + 0.866i)11-s + (0.766 − 0.642i)13-s + (0.766 + 0.642i)17-s + (−0.342 + 0.939i)19-s + (0.173 − 0.984i)21-s + (0.5 + 0.866i)23-s + (0.866 − 0.5i)27-s + (−0.866 − 0.5i)29-s + i·31-s + (−0.642 − 0.766i)33-s + (0.342 + 0.939i)39-s + (−0.766 + 0.642i)41-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.939i)3-s + (−0.984 + 0.173i)7-s + (−0.766 − 0.642i)9-s + (−0.5 + 0.866i)11-s + (0.766 − 0.642i)13-s + (0.766 + 0.642i)17-s + (−0.342 + 0.939i)19-s + (0.173 − 0.984i)21-s + (0.5 + 0.866i)23-s + (0.866 − 0.5i)27-s + (−0.866 − 0.5i)29-s + i·31-s + (−0.642 − 0.766i)33-s + (0.342 + 0.939i)39-s + (−0.766 + 0.642i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.940 - 0.340i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.940 - 0.340i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.08892963038 + 0.5073607367i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.08892963038 + 0.5073607367i\) |
\(L(1)\) |
\(\approx\) |
\(0.6461895986 + 0.3419282054i\) |
\(L(1)\) |
\(\approx\) |
\(0.6461895986 + 0.3419282054i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (-0.342 + 0.939i)T \) |
| 7 | \( 1 + (-0.984 + 0.173i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.766 - 0.642i)T \) |
| 17 | \( 1 + (0.766 + 0.642i)T \) |
| 19 | \( 1 + (-0.342 + 0.939i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 + iT \) |
| 41 | \( 1 + (-0.766 + 0.642i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (0.984 + 0.173i)T \) |
| 59 | \( 1 + (-0.984 - 0.173i)T \) |
| 61 | \( 1 + (-0.642 - 0.766i)T \) |
| 67 | \( 1 + (-0.984 + 0.173i)T \) |
| 71 | \( 1 + (-0.939 - 0.342i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (-0.984 + 0.173i)T \) |
| 83 | \( 1 + (-0.642 + 0.766i)T \) |
| 89 | \( 1 + (-0.984 - 0.173i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.175991074335854738064687657988, −19.14018789154564154953041081922, −18.84091419470250125159957972876, −18.252420764547323740161204503863, −17.13609373071954059405074209906, −16.52027149838453922423447632335, −16.01848185137444965066291030683, −14.90948237618811726740358648245, −13.76363003380344011958292599667, −13.48235065966659308707765524048, −12.707139728789906398148430472025, −11.91621262948823949176034540671, −11.05292004583386000510338390625, −10.4981520481250825374727225909, −9.20196122274091648976042673114, −8.67839483524233918986336524893, −7.541876789640209451385987757098, −6.95805999577039465818361306311, −6.08094612519667294401209543852, −5.55415313638840286433404331287, −4.3059313893957049516632263046, −3.145287873930070421035695878787, −2.50447714228291463058815926386, −1.18188024646426329571011190512, −0.22362975713383038969436920656,
1.412983324818114623967924549, 2.84613703434329749960276940895, 3.55008194516469600604521223478, 4.290714404616106571796390968770, 5.57077017417849938067861944282, 5.796326966189990788584164013613, 6.931555164423501366565790673240, 7.95607676859179205615621212313, 8.87147061864042833489375653522, 9.71466352786119353451048163285, 10.27376481699892533592376438269, 10.87693450404422633361001371863, 12.01638451119998788068347434150, 12.60906280259557324959779513304, 13.39544166589740396280884020493, 14.48476428951140994811904779048, 15.36399122250990278129553175495, 15.613084116428723956216590921885, 16.61047414196130490821920216352, 17.09831401335519673659962949276, 18.054592824845258729956969618682, 18.79210435314901781422556844652, 19.712065983867121881132332394579, 20.45109200041928717684413973603, 21.11227784033198808964238270908