L(s) = 1 | + (0.642 − 0.766i)3-s + (−0.342 − 0.939i)7-s + (−0.173 − 0.984i)9-s + (−0.5 − 0.866i)11-s + (−0.173 + 0.984i)13-s + (−0.173 − 0.984i)17-s + (−0.642 + 0.766i)19-s + (−0.939 − 0.342i)21-s + (−0.5 + 0.866i)23-s + (−0.866 − 0.5i)27-s + (−0.866 + 0.5i)29-s − i·31-s + (−0.984 − 0.173i)33-s + (0.642 + 0.766i)39-s + (−0.173 + 0.984i)41-s + ⋯ |
L(s) = 1 | + (0.642 − 0.766i)3-s + (−0.342 − 0.939i)7-s + (−0.173 − 0.984i)9-s + (−0.5 − 0.866i)11-s + (−0.173 + 0.984i)13-s + (−0.173 − 0.984i)17-s + (−0.642 + 0.766i)19-s + (−0.939 − 0.342i)21-s + (−0.5 + 0.866i)23-s + (−0.866 − 0.5i)27-s + (−0.866 + 0.5i)29-s − i·31-s + (−0.984 − 0.173i)33-s + (0.642 + 0.766i)39-s + (−0.173 + 0.984i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.860 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.860 + 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1530909251 - 0.5597095136i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.1530909251 - 0.5597095136i\) |
\(L(1)\) |
\(\approx\) |
\(0.8330489912 - 0.4364763024i\) |
\(L(1)\) |
\(\approx\) |
\(0.8330489912 - 0.4364763024i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.642 - 0.766i)T \) |
| 7 | \( 1 + (-0.342 - 0.939i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.173 + 0.984i)T \) |
| 17 | \( 1 + (-0.173 - 0.984i)T \) |
| 19 | \( 1 + (-0.642 + 0.766i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.866 + 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (-0.173 + 0.984i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (0.342 - 0.939i)T \) |
| 59 | \( 1 + (0.342 - 0.939i)T \) |
| 61 | \( 1 + (0.984 + 0.173i)T \) |
| 67 | \( 1 + (-0.342 - 0.939i)T \) |
| 71 | \( 1 + (0.766 + 0.642i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (0.342 + 0.939i)T \) |
| 83 | \( 1 + (-0.984 + 0.173i)T \) |
| 89 | \( 1 + (0.342 - 0.939i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.06865126282020407167792298076, −20.37742805269795987073666632891, −19.66987582229010656564373629716, −19.03935440108917904107229009914, −18.081016418963247992270779639408, −17.38585796470830033043628782919, −16.405306000390490610016532095140, −15.600078227419285357393649056114, −15.08183790404639347554039386587, −14.68439204030922323353274252088, −13.4108286506544725700796171811, −12.81611710382586880248782794898, −12.09899779248468855584605063093, −10.85506110733703384352496948157, −10.29778558563599286413500384096, −9.5731991591060260443348385593, −8.66439943729371032285378478877, −8.19629769539532168541321924036, −7.15922770327089875212208802086, −6.043382589158202398269716281470, −5.20651202958735727945462572601, −4.454329369263057274839842855434, −3.45041918118662342055882371677, −2.56256339984857622039753745084, −1.95657884766284184923236028717,
0.18177639039042405990159864686, 1.426203687563114429612234589799, 2.32342302482088299486997808896, 3.40757247994936792977472801286, 3.96895755922577890970871857996, 5.24352529218957904074446426654, 6.34321294968471647131388521731, 6.93782599232208889819163625602, 7.77144112883241174762954850923, 8.40280759706334454474994128728, 9.44414862311034941411271360733, 9.9918947697724525476077697304, 11.25900358679167770041538401500, 11.71091500548050795582251892449, 12.97794452872549376102633339362, 13.312287250427884903603194016389, 14.10441183439870708443278483554, 14.63057537836068894037732133223, 15.765321351391804224794951084285, 16.55388791428185653439445804754, 17.13338508158115159962356242399, 18.30436115369944771808303265305, 18.67284642751927820613922439704, 19.517635200801570885551819327447, 20.076962369448552583520182153224