L(s) = 1 | + (0.984 − 0.173i)3-s + (0.642 + 0.766i)7-s + (0.939 − 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.939 − 0.342i)13-s + (−0.939 + 0.342i)17-s + (0.984 − 0.173i)19-s + (0.766 + 0.642i)21-s + (0.5 + 0.866i)23-s + (0.866 − 0.5i)27-s + (−0.866 − 0.5i)29-s + i·31-s + (−0.342 + 0.939i)33-s + (−0.984 − 0.173i)39-s + (0.939 + 0.342i)41-s + ⋯ |
L(s) = 1 | + (0.984 − 0.173i)3-s + (0.642 + 0.766i)7-s + (0.939 − 0.342i)9-s + (−0.5 + 0.866i)11-s + (−0.939 − 0.342i)13-s + (−0.939 + 0.342i)17-s + (0.984 − 0.173i)19-s + (0.766 + 0.642i)21-s + (0.5 + 0.866i)23-s + (0.866 − 0.5i)27-s + (−0.866 − 0.5i)29-s + i·31-s + (−0.342 + 0.939i)33-s + (−0.984 − 0.173i)39-s + (0.939 + 0.342i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.608 + 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.608 + 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.023412337 + 0.9987628412i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.023412337 + 0.9987628412i\) |
\(L(1)\) |
\(\approx\) |
\(1.489537603 + 0.2326093857i\) |
\(L(1)\) |
\(\approx\) |
\(1.489537603 + 0.2326093857i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.984 - 0.173i)T \) |
| 7 | \( 1 + (0.642 + 0.766i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.939 - 0.342i)T \) |
| 17 | \( 1 + (-0.939 + 0.342i)T \) |
| 19 | \( 1 + (0.984 - 0.173i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 + iT \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.642 + 0.766i)T \) |
| 59 | \( 1 + (0.642 - 0.766i)T \) |
| 61 | \( 1 + (-0.342 + 0.939i)T \) |
| 67 | \( 1 + (0.642 + 0.766i)T \) |
| 71 | \( 1 + (0.173 + 0.984i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (0.642 + 0.766i)T \) |
| 83 | \( 1 + (-0.342 - 0.939i)T \) |
| 89 | \( 1 + (0.642 - 0.766i)T \) |
| 97 | \( 1 + (-0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.637655636685746869020557546396, −19.89624146417013868733242226197, −19.13207081068960746646232785779, −18.44786157993929507667206203563, −17.604086140352517169951607696952, −16.64122512514273700264406580773, −16.06267394557116752747481613040, −15.11061891454979747167101574042, −14.42534466493158717913825109680, −13.81509738712508884054807600106, −13.21840887099206674464260033989, −12.269082061184040088358721824259, −11.08109225967649186962556381778, −10.68836208935875582023916472447, −9.54477827105447551993092850602, −9.05053348295403346855253515119, −7.96034914207551968188681250269, −7.55050051905577682124600054215, −6.68003918574721317388547692226, −5.32612301133275771338653806245, −4.55873796441325985515343934990, −3.777878196650836878426993352556, −2.76672296804420018930334639316, −2.02782207046516416545332576905, −0.75475034013289162396746288836,
1.34454793013708667287881651853, 2.30512002012862203519609966683, 2.79391500001176134984307552567, 4.03889260344284962111154263193, 4.89784537210564329114414727833, 5.665663471310936026967298058835, 7.07644102961976991401680351586, 7.515349513774748854676418123400, 8.3403763864236965829474829185, 9.22391675805836811458879575343, 9.71229625062950051985476610272, 10.75874360785770602206763802096, 11.726234069328292453707259683663, 12.56486878819546568976629181200, 13.102491024938890948606228441217, 14.097461298457944143821959910177, 14.7474650170960683905093576266, 15.44606268180798476664187985124, 15.81824954405103372857416647168, 17.376711571035661111749958312537, 17.768379115003941580496439844466, 18.57000934878542626736221013161, 19.33958761369504151474490876970, 20.09268804469211910486378856798, 20.61238736262860494028541651010