L(s) = 1 | + 3-s + 7-s + 9-s − 11-s − i·13-s + i·17-s − i·19-s + 21-s − i·23-s + 27-s − i·29-s − i·31-s − 33-s − i·39-s − 41-s + ⋯ |
L(s) = 1 | + 3-s + 7-s + 9-s − 11-s − i·13-s + i·17-s − i·19-s + 21-s − i·23-s + 27-s − i·29-s − i·31-s − 33-s − i·39-s − 41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.763 - 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.763 - 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.333663044 - 0.8555893994i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.333663044 - 0.8555893994i\) |
\(L(1)\) |
\(\approx\) |
\(1.593407266 - 0.2079021968i\) |
\(L(1)\) |
\(\approx\) |
\(1.593407266 - 0.2079021968i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 7 | \( 1 + T \) |
| 11 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 \) |
| 29 | \( 1 + T \) |
| 31 | \( 1 \) |
| 41 | \( 1 \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 + iT \) |
| 67 | \( 1 \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.737090502295047194922401913345, −20.161660418917314696900383069273, −19.233683864476055010702127684243, −18.38715666741525420892580715846, −18.1452995044999944210668142922, −16.9222354882242232030609073176, −16.06999665779317103196997077133, −15.41399221980663540233190680431, −14.57241851210956777586632073740, −13.94736886868458286780963484829, −13.461827160687416192034830480920, −12.34058361561528854336542348855, −11.66694489841522223698720293940, −10.62329733722618753251672522446, −9.96922881861661648512607892910, −8.91757345200837309298316714991, −8.47218148265922489614520840790, −7.41386159180571330061809623029, −7.127860981055282616253285984031, −5.57707102112323423230025367102, −4.84979293380400631080649657621, −3.95571816382520734291000551480, −3.01544355358523852607771563840, −2.06355785378153748575756271306, −1.35304238361570800376003084149,
0.85201448304966234448695566495, 2.15059618626996589687956264412, 2.64180198375207300457042274074, 3.78707603883182139080629385670, 4.637285060121935491704547384357, 5.43040384027791310732453014006, 6.580327608799391458453687613763, 7.71576753125455036504178449838, 8.078218153641983790981815986666, 8.73154531399039528778225114155, 9.83350413201214061783281499942, 10.52851421862342952242519542355, 11.22459540914882338297776704226, 12.43260449510045981417995878930, 13.101508229529833384475876401, 13.71177336612547710658477515524, 14.66613997893685996242704786064, 15.2408485103341455797593431377, 15.68052322108289244976686195074, 16.93866050084045656013945048004, 17.68288488535390282795990076446, 18.436222811514135891852138740934, 19.02287417408152167583889816820, 20.107391553558756852329840501344, 20.42211493723364436677490367642