L(s) = 1 | − i·3-s + i·7-s − 9-s + 11-s + 13-s + 17-s − i·19-s + 21-s − 23-s + i·27-s + i·29-s + i·31-s − i·33-s − i·39-s − 41-s + ⋯ |
L(s) = 1 | − i·3-s + i·7-s − 9-s + 11-s + 13-s + 17-s − i·19-s + 21-s − 23-s + i·27-s + i·29-s + i·31-s − i·33-s − i·39-s − 41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.148i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.988 - 0.148i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.673139871 - 0.1250899045i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.673139871 - 0.1250899045i\) |
\(L(1)\) |
\(\approx\) |
\(1.152554199 - 0.1748529770i\) |
\(L(1)\) |
\(\approx\) |
\(1.152554199 - 0.1748529770i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + T \) |
| 7 | \( 1 - iT \) |
| 11 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 \) |
| 41 | \( 1 \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.80765786199627937866696469349, −20.07537983075842921767119508154, −19.37002087181307746639240278282, −18.42700679322075364915616307966, −17.436733963377789742962788544263, −16.69133764775016672443681781166, −16.40620858754278490472306960134, −15.423961350759250438374394827312, −14.57217748128434206101458687309, −14.01897427689538523325474976702, −13.32183113011975226982661913708, −11.98106163160497019824806819545, −11.52419091577058804906830947575, −10.46165336949828657469732984991, −10.05837949228127125814681492102, −9.23460021397914354599667035698, −8.2837395045409491118083250768, −7.60049139926432819768084317213, −6.30356105208394247886539204129, −5.81531631745517609070059058290, −4.60428092443263457685173326806, −3.72492199626125713940233847497, −3.570307115622477740269625926825, −1.952798795361067715932259908313, −0.77755719108302954299624532370,
1.050005145954681928511395229096, 1.80002055180973310780655060610, 2.86443306485774349725897047473, 3.65040306014986621863495932650, 5.0187665544723764598266325320, 5.88787350639368584739519583278, 6.46785277556598624399221000464, 7.307789543693101675730796852821, 8.36132908616433488708765001978, 8.806023554604030811290429821051, 9.6680553546382095668374540457, 10.9713053733731408754980991651, 11.58601451849229070139488059808, 12.37138932206254157246491431428, 12.804694097523788693278769038101, 14.095580295623331322266236026337, 14.19603776254353531275128030219, 15.39156034777151688795635370025, 16.112242906046343157973474684604, 17.05540359990275948352676501335, 17.80939665295642077885558598096, 18.43885175487984879084531656581, 19.02923577367060516390853753154, 19.78560431785220038089779655959, 20.457285564164295687662067269051