L(s) = 1 | + (0.984 + 0.173i)3-s + (−0.642 + 0.766i)7-s + (0.939 + 0.342i)9-s + (−0.5 − 0.866i)11-s + (0.342 + 0.939i)13-s + (−0.342 + 0.939i)17-s + (−0.173 + 0.984i)19-s + (−0.766 + 0.642i)21-s + (0.866 + 0.5i)23-s + (0.866 + 0.5i)27-s + (−0.5 − 0.866i)29-s − 31-s + (−0.342 − 0.939i)33-s + (0.173 + 0.984i)39-s + (−0.939 + 0.342i)41-s + ⋯ |
L(s) = 1 | + (0.984 + 0.173i)3-s + (−0.642 + 0.766i)7-s + (0.939 + 0.342i)9-s + (−0.5 − 0.866i)11-s + (0.342 + 0.939i)13-s + (−0.342 + 0.939i)17-s + (−0.173 + 0.984i)19-s + (−0.766 + 0.642i)21-s + (0.866 + 0.5i)23-s + (0.866 + 0.5i)27-s + (−0.5 − 0.866i)29-s − 31-s + (−0.342 − 0.939i)33-s + (0.173 + 0.984i)39-s + (−0.939 + 0.342i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.375 + 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.375 + 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9062900924 + 1.345290517i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9062900924 + 1.345290517i\) |
\(L(1)\) |
\(\approx\) |
\(1.198365817 + 0.4031406058i\) |
\(L(1)\) |
\(\approx\) |
\(1.198365817 + 0.4031406058i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.984 + 0.173i)T \) |
| 7 | \( 1 + (-0.642 + 0.766i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.342 + 0.939i)T \) |
| 17 | \( 1 + (-0.342 + 0.939i)T \) |
| 19 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 - T \) |
| 41 | \( 1 + (-0.939 + 0.342i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.642 - 0.766i)T \) |
| 59 | \( 1 + (-0.766 + 0.642i)T \) |
| 61 | \( 1 + (0.939 - 0.342i)T \) |
| 67 | \( 1 + (0.642 - 0.766i)T \) |
| 71 | \( 1 + (-0.173 + 0.984i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.342 - 0.939i)T \) |
| 89 | \( 1 + (-0.766 + 0.642i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.40967475638340890334869813243, −19.88730675835828948097526216065, −19.00422653583765200698563921553, −18.23956189410624880681400237223, −17.598354885574055672275485039900, −16.574041515670039256051701644525, −15.69756076233630027839414962632, −15.20880285369539429612695654398, −14.34854621661195624211311619449, −13.43909054237220359178692138614, −13.02087833251307010993219198085, −12.39142900321528116888487175578, −10.98630912694955679884617360259, −10.39060542942777215462748088671, −9.48703821097254992345806204085, −8.92896449432190636924476139774, −7.878984347754012152457424930, −7.14210642217125341425882684629, −6.71393478136221375023892587631, −5.23703177687743514504792412606, −4.45169723867767325345125645078, −3.37730316555615958168053418132, −2.831777974113658397949415543365, −1.76670686950322226994281659780, −0.501454232581264215816974247150,
1.543364902249438142488393585905, 2.326406858945280284358238786550, 3.37001832768475625744435028416, 3.838553331358040788738658861096, 5.074204472345536618784582008581, 6.04170426346343942651892665912, 6.78147754916050379575532956176, 7.95811145991751082237274755682, 8.51218426222985469579574425678, 9.25715863653935900846409929794, 9.91065889969919956927677667425, 10.89275833456252066536150494666, 11.70313525188222974786200906312, 12.94131218880388037928807420492, 13.12563574698103108079200477223, 14.157351794427264538565346314415, 14.86984815918457644856549713022, 15.5581157997085614072927930178, 16.27306337248407891659268312254, 16.89604521067190383590970504996, 18.26316972740435538862326025743, 18.865168765270175791646192899023, 19.238266395366341155329572777888, 20.06558624710078437545035723333, 21.15254004343641866258702162474