L(s) = 1 | + (−0.642 − 0.766i)3-s + (0.342 − 0.939i)7-s + (−0.173 + 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.173 − 0.984i)13-s + (−0.173 + 0.984i)17-s + (0.642 + 0.766i)19-s + (−0.939 + 0.342i)21-s + (−0.5 − 0.866i)23-s + (0.866 − 0.5i)27-s + (0.866 + 0.5i)29-s − i·31-s + (0.984 − 0.173i)33-s + (−0.642 + 0.766i)39-s + (−0.173 − 0.984i)41-s + ⋯ |
L(s) = 1 | + (−0.642 − 0.766i)3-s + (0.342 − 0.939i)7-s + (−0.173 + 0.984i)9-s + (−0.5 + 0.866i)11-s + (−0.173 − 0.984i)13-s + (−0.173 + 0.984i)17-s + (0.642 + 0.766i)19-s + (−0.939 + 0.342i)21-s + (−0.5 − 0.866i)23-s + (0.866 − 0.5i)27-s + (0.866 + 0.5i)29-s − i·31-s + (0.984 − 0.173i)33-s + (−0.642 + 0.766i)39-s + (−0.173 − 0.984i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.791 - 0.611i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.791 - 0.611i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2605981846 - 0.7640064149i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2605981846 - 0.7640064149i\) |
\(L(1)\) |
\(\approx\) |
\(0.7324784566 - 0.3109102782i\) |
\(L(1)\) |
\(\approx\) |
\(0.7324784566 - 0.3109102782i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (-0.642 - 0.766i)T \) |
| 7 | \( 1 + (0.342 - 0.939i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.173 - 0.984i)T \) |
| 17 | \( 1 + (-0.173 + 0.984i)T \) |
| 19 | \( 1 + (0.642 + 0.766i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.866 + 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (-0.173 - 0.984i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.342 - 0.939i)T \) |
| 59 | \( 1 + (-0.342 - 0.939i)T \) |
| 61 | \( 1 + (-0.984 + 0.173i)T \) |
| 67 | \( 1 + (0.342 - 0.939i)T \) |
| 71 | \( 1 + (0.766 - 0.642i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (-0.342 + 0.939i)T \) |
| 83 | \( 1 + (0.984 + 0.173i)T \) |
| 89 | \( 1 + (-0.342 - 0.939i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.291544589966472866563838030605, −20.349400058787947743074509418689, −19.45258808518652921929320374670, −18.48213394429483736033796562900, −18.01375805886960332460822596040, −17.193546379047718549955042137285, −16.19894299876552988007941258443, −15.85905870584180561233861940026, −15.15340831061933018362163807791, −14.13113816406194601337638489448, −13.54477828042083483374859015801, −12.226957909042919568020807862253, −11.67274489221143007406310189790, −11.20026803911305979532645799501, −10.21475925817103163981707027797, −9.290657444755641831989891049089, −8.88477817147926245710893426698, −7.78242532583048475902206827871, −6.67861042643293376615530958635, −5.89188130408238634012914312539, −5.0861876918247532298200449384, −4.55888078720883977537865300600, −3.29722473270864219936962483284, −2.57017811769079634650929898665, −1.16422612321793977682517170040,
0.36400014257154069865533646958, 1.48929327073282809542655169440, 2.31150518194437169835646733782, 3.59996860535513503677872648233, 4.635248512974020913405285365349, 5.35863833673211864807881102672, 6.29312999304969321828963840779, 7.10363156259968207836489171714, 7.868978415305492079704009589112, 8.30952368639416035354275278259, 9.94891263542585708408096685088, 10.40958549680770678926862426149, 11.08730454143531638120882710151, 12.21120196440897750188469694313, 12.60973042518073524208310342632, 13.440715288261034352394184411244, 14.1705248217035205854314129750, 15.05098401058919029364947790466, 15.95150905879183198066391933205, 16.91410551968916526814226713565, 17.32817733378118768816374016776, 18.11940569555501942781282100930, 18.6111197532211153130623476192, 19.79703667398147717635218720947, 20.17057830525157818180928585174