L(s) = 1 | + (−0.342 − 0.939i)3-s + (−0.984 − 0.173i)7-s + (−0.766 + 0.642i)9-s + (−0.5 − 0.866i)11-s + (0.766 + 0.642i)13-s + (0.766 − 0.642i)17-s + (−0.342 − 0.939i)19-s + (0.173 + 0.984i)21-s + (0.5 − 0.866i)23-s + (0.866 + 0.5i)27-s + (−0.866 + 0.5i)29-s − i·31-s + (−0.642 + 0.766i)33-s + (0.342 − 0.939i)39-s + (−0.766 − 0.642i)41-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.939i)3-s + (−0.984 − 0.173i)7-s + (−0.766 + 0.642i)9-s + (−0.5 − 0.866i)11-s + (0.766 + 0.642i)13-s + (0.766 − 0.642i)17-s + (−0.342 − 0.939i)19-s + (0.173 + 0.984i)21-s + (0.5 − 0.866i)23-s + (0.866 + 0.5i)27-s + (−0.866 + 0.5i)29-s − i·31-s + (−0.642 + 0.766i)33-s + (0.342 − 0.939i)39-s + (−0.766 − 0.642i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.940 + 0.340i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.940 + 0.340i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.08892963038 - 0.5073607367i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.08892963038 - 0.5073607367i\) |
\(L(1)\) |
\(\approx\) |
\(0.6461895986 - 0.3419282054i\) |
\(L(1)\) |
\(\approx\) |
\(0.6461895986 - 0.3419282054i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (-0.342 - 0.939i)T \) |
| 7 | \( 1 + (-0.984 - 0.173i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.766 + 0.642i)T \) |
| 17 | \( 1 + (0.766 - 0.642i)T \) |
| 19 | \( 1 + (-0.342 - 0.939i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.866 + 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (-0.766 - 0.642i)T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.866 + 0.5i)T \) |
| 53 | \( 1 + (0.984 - 0.173i)T \) |
| 59 | \( 1 + (-0.984 + 0.173i)T \) |
| 61 | \( 1 + (-0.642 + 0.766i)T \) |
| 67 | \( 1 + (-0.984 - 0.173i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (-0.984 - 0.173i)T \) |
| 83 | \( 1 + (-0.642 - 0.766i)T \) |
| 89 | \( 1 + (-0.984 + 0.173i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.11227784033198808964238270908, −20.45109200041928717684413973603, −19.712065983867121881132332394579, −18.79210435314901781422556844652, −18.054592824845258729956969618682, −17.09831401335519673659962949276, −16.61047414196130490821920216352, −15.613084116428723956216590921885, −15.36399122250990278129553175495, −14.48476428951140994811904779048, −13.39544166589740396280884020493, −12.60906280259557324959779513304, −12.01638451119998788068347434150, −10.87693450404422633361001371863, −10.27376481699892533592376438269, −9.71466352786119353451048163285, −8.87147061864042833489375653522, −7.95607676859179205615621212313, −6.931555164423501366565790673240, −5.796326966189990788584164013613, −5.57077017417849938067861944282, −4.290714404616106571796390968770, −3.55008194516469600604521223478, −2.84613703434329749960276940895, −1.412983324818114623967924549,
0.22362975713383038969436920656, 1.18188024646426329571011190512, 2.50447714228291463058815926386, 3.145287873930070421035695878787, 4.3059313893957049516632263046, 5.55415313638840286433404331287, 6.08094612519667294401209543852, 6.95805999577039465818361306311, 7.541876789640209451385987757098, 8.67839483524233918986336524893, 9.20196122274091648976042673114, 10.4981520481250825374727225909, 11.05292004583386000510338390625, 11.91621262948823949176034540671, 12.707139728789906398148430472025, 13.48235065966659308707765524048, 13.76363003380344011958292599667, 14.90948237618811726740358648245, 16.01848185137444965066291030683, 16.52027149838453922423447632335, 17.13609373071954059405074209906, 18.252420764547323740161204503863, 18.84091419470250125159957972876, 19.14018789154564154953041081922, 20.175991074335854738064687657988