L(s) = 1 | + (0.866 − 0.5i)3-s + (−0.866 + 0.5i)7-s + (0.5 − 0.866i)9-s + 11-s + (0.5 + 0.866i)13-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s + (−0.5 + 0.866i)21-s + 23-s − i·27-s − i·29-s + i·31-s + (0.866 − 0.5i)33-s + (0.866 + 0.5i)39-s + (0.5 + 0.866i)41-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)3-s + (−0.866 + 0.5i)7-s + (0.5 − 0.866i)9-s + 11-s + (0.5 + 0.866i)13-s + (0.5 − 0.866i)17-s + (−0.866 + 0.5i)19-s + (−0.5 + 0.866i)21-s + 23-s − i·27-s − i·29-s + i·31-s + (0.866 − 0.5i)33-s + (0.866 + 0.5i)39-s + (0.5 + 0.866i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00214i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00214i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.180838048 + 0.002341481304i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.180838048 + 0.002341481304i\) |
\(L(1)\) |
\(\approx\) |
\(1.438157438 - 0.08818701537i\) |
\(L(1)\) |
\(\approx\) |
\(1.438157438 - 0.08818701537i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.866 - 0.5i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-0.866 + 0.5i)T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 - iT \) |
| 31 | \( 1 + iT \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.866 + 0.5i)T \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (-0.866 + 0.5i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 + (0.866 - 0.5i)T \) |
| 83 | \( 1 + (0.866 + 0.5i)T \) |
| 89 | \( 1 + (0.866 + 0.5i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.64013819945846171186257962413, −19.83670020865551540636007434278, −19.30303447294455181443600793889, −18.79489748156451253232054503891, −17.38864443486221994709839042031, −16.917607040267413775633675560944, −16.08016223458726116622424337799, −15.20317534669117687215425264614, −14.81586703852959953882937757971, −13.786453512973962438740473929835, −13.15491787019981643554350289991, −12.57210310275283774702277897788, −11.27947552090180556194287304158, −10.51339230622073801952361144507, −9.8414173057742965122954701892, −9.08983874846193771625767004630, −8.363659007849314132312415988925, −7.50633797048635109910756861078, −6.58086289297802209739145963654, −5.77601514830256447512409065237, −4.49232106403765161677905238110, −3.78593962293653689712811518571, −3.17716515245852893738351930149, −2.127110477719149986307115531448, −0.88231958820553609997794149344,
1.09121651645513640386111488815, 1.97286893668593013086530134584, 3.06439644514801434079132070915, 3.60453583553156184645121244555, 4.665182426043151310801458171614, 5.969942395237513764631195022710, 6.72577178780306145796275782900, 7.20109207543424085459383211210, 8.512825851262775771619540412016, 8.98710646221547915516448475405, 9.56946384122743414080433863353, 10.587691585121452951404778597398, 11.844921047551283781954968872160, 12.23009543134284835136659170483, 13.1892322175178336528109908183, 13.77339938018749745162219564208, 14.6770497293589297408425539338, 15.10158745952019838523181606669, 16.35926288034924784235484030492, 16.597222015820719433461082101343, 17.96987525051908055822798023286, 18.53012328838848570127241479738, 19.33895691959030373308446486427, 19.60944185530826253248586795210, 20.63670700109112651580853482543