L(s) = 1 | + (0.342 + 0.939i)3-s + (0.984 + 0.173i)7-s + (−0.766 + 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.766 − 0.642i)13-s + (−0.766 + 0.642i)17-s + (−0.342 − 0.939i)19-s + (0.173 + 0.984i)21-s + (−0.5 + 0.866i)23-s + (−0.866 − 0.5i)27-s + (−0.866 + 0.5i)29-s − i·31-s + (0.642 − 0.766i)33-s + (0.342 − 0.939i)39-s + (−0.766 − 0.642i)41-s + ⋯ |
L(s) = 1 | + (0.342 + 0.939i)3-s + (0.984 + 0.173i)7-s + (−0.766 + 0.642i)9-s + (−0.5 − 0.866i)11-s + (−0.766 − 0.642i)13-s + (−0.766 + 0.642i)17-s + (−0.342 − 0.939i)19-s + (0.173 + 0.984i)21-s + (−0.5 + 0.866i)23-s + (−0.866 − 0.5i)27-s + (−0.866 + 0.5i)29-s − i·31-s + (0.642 − 0.766i)33-s + (0.342 − 0.939i)39-s + (−0.766 − 0.642i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.724 - 0.689i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.724 - 0.689i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.001413030642 + 0.003537174166i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.001413030642 + 0.003537174166i\) |
\(L(1)\) |
\(\approx\) |
\(0.8554239768 + 0.2318121591i\) |
\(L(1)\) |
\(\approx\) |
\(0.8554239768 + 0.2318121591i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.342 + 0.939i)T \) |
| 7 | \( 1 + (0.984 + 0.173i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.766 - 0.642i)T \) |
| 17 | \( 1 + (-0.766 + 0.642i)T \) |
| 19 | \( 1 + (-0.342 - 0.939i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.866 + 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (-0.766 - 0.642i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.984 + 0.173i)T \) |
| 59 | \( 1 + (-0.984 + 0.173i)T \) |
| 61 | \( 1 + (-0.642 + 0.766i)T \) |
| 67 | \( 1 + (0.984 + 0.173i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 + iT \) |
| 79 | \( 1 + (-0.984 - 0.173i)T \) |
| 83 | \( 1 + (0.642 + 0.766i)T \) |
| 89 | \( 1 + (-0.984 + 0.173i)T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.29881284615195302613836723246, −19.46034887366167241691631438647, −18.48363903637913384039450050864, −18.14984702790370573378571128524, −17.3176901286067158095093853512, −16.6753601664500961762791917128, −15.48120155546424224075771412916, −14.63138955251261685690497668738, −14.25463589870982393491083983839, −13.36566382221314049525363928381, −12.5351717429391911481888850482, −11.9226626612029151275961438219, −11.1752330874987973507089885985, −10.15322263193061713597029939507, −9.2742434554354328979429455195, −8.317124127947698664253670358135, −7.7425967617049249835894269046, −7.00241265945381225346627393080, −6.24619109062534307932549523760, −5.00024230163162017632887818211, −4.43633888185202492869137136900, −3.11928246072135484740671056897, −1.99182392665657316568619442902, −1.71678997004634577864562764304, −0.00118375695297733482488452508,
1.80148380329985394123079426838, 2.66805769308370379484276089028, 3.58229529663924854050306231936, 4.54029584454699649646181000533, 5.234962966632513025045586233128, 5.91491092296323377031731714026, 7.309663989561303501406828140299, 8.163591214474489735366776171150, 8.666064254278883966815406218323, 9.57213968124672155163932746178, 10.453491807125811506946397929070, 11.114996805226582415631467847345, 11.65071898634768420648080758332, 12.95716855985823763794140175579, 13.62984278143251065359864884253, 14.47770131421443037918407763671, 15.29259976017474518646318338224, 15.4982426286233248590888264015, 16.69690897073909954136995486054, 17.26077345199723013938041946208, 18.02202231056839816198423579143, 18.985212442076062623294330123717, 19.8540839503352213669645946234, 20.35327885611309995396004791843, 21.23114773722559133352445406913