L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.866 − 0.5i)5-s + (0.5 − 0.866i)7-s + (−0.5 − 0.866i)9-s + 11-s + (−0.866 − 0.5i)13-s + (0.866 − 0.5i)15-s + (0.866 − 0.5i)17-s + (0.866 + 0.5i)19-s + (0.5 + 0.866i)21-s − i·23-s + (0.5 + 0.866i)25-s + 27-s − i·29-s − i·31-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.866 − 0.5i)5-s + (0.5 − 0.866i)7-s + (−0.5 − 0.866i)9-s + 11-s + (−0.866 − 0.5i)13-s + (0.866 − 0.5i)15-s + (0.866 − 0.5i)17-s + (0.866 + 0.5i)19-s + (0.5 + 0.866i)21-s − i·23-s + (0.5 + 0.866i)25-s + 27-s − i·29-s − i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 148 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.849 - 0.527i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.849 - 0.527i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7838061686 - 0.2235726399i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7838061686 - 0.2235726399i\) |
\(L(1)\) |
\(\approx\) |
\(0.8388522608 - 0.04083762858i\) |
\(L(1)\) |
\(\approx\) |
\(0.8388522608 - 0.04083762858i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (-0.866 - 0.5i)T \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 - iT \) |
| 29 | \( 1 - iT \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (0.5 - 0.866i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (-0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.866 + 0.5i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.866 + 0.5i)T \) |
| 83 | \( 1 + (0.5 + 0.866i)T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.00600903464581692411838002861, −27.61542143571508350813769120888, −26.27375412949334395457835159632, −25.03434912847894745075616499001, −24.263387605893918267042364645, −23.44628371925019253098589255048, −22.34142435713322109073025087417, −21.690918771881552231887062214680, −19.88792991299106994580531729847, −19.20097430462553366725781487537, −18.34869166496864902033138117118, −17.35793856370060072030823037852, −16.26356347161031162933015796347, −14.91508471106630559294173863867, −14.182337956905746746069569687407, −12.58293458490759326716425037950, −11.748885756456574226371978737270, −11.24216283956682409652797428921, −9.46226145116692456863773289264, −8.04850128659261264651969594283, −7.22424718042020686679901684459, −6.05841930264207839516117635530, −4.76681488515940500335472867767, −3.06598824081403427139597760075, −1.54133658187264309571428953286,
0.855028298863351235917891193207, 3.43927342930409744806259617622, 4.39472107435367312077538594364, 5.33720939446730881577097901399, 7.02507230831844069853172790011, 8.1708836916127575005666433718, 9.499826878444028931675280384543, 10.506539456636189346523717073340, 11.68304770214305689128764944155, 12.30008403519623511406272094393, 14.13582186104956567823627576226, 14.93769238121703517256832962447, 16.20143887963681996994929380479, 16.81343279942126955013080206773, 17.73988075083992393742304124784, 19.35762573203031598476668239313, 20.324548023821441355112090767258, 20.929113628537611607383187425369, 22.41035348228216507250086611200, 22.946959112685691565582130156263, 24.03863261873788609885545987248, 24.96872432879917563055594181460, 26.632408997229722145582605258070, 27.1552305906962765173343986165, 27.76919662682985695650062265613