L(s) = 1 | + (0.766 − 0.642i)3-s + (−0.342 + 0.939i)5-s + (0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 + 0.866i)11-s + (0.984 − 0.173i)13-s + (0.342 + 0.939i)15-s + (−0.984 − 0.173i)17-s + (0.642 + 0.766i)19-s + (0.939 − 0.342i)21-s + (0.866 − 0.5i)23-s + (−0.766 − 0.642i)25-s + (−0.5 − 0.866i)27-s + (−0.866 − 0.5i)29-s − i·31-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)3-s + (−0.342 + 0.939i)5-s + (0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (−0.5 + 0.866i)11-s + (0.984 − 0.173i)13-s + (0.342 + 0.939i)15-s + (−0.984 − 0.173i)17-s + (0.642 + 0.766i)19-s + (0.939 − 0.342i)21-s + (0.866 − 0.5i)23-s + (−0.766 − 0.642i)25-s + (−0.5 − 0.866i)27-s + (−0.866 − 0.5i)29-s − i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 148 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 148 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.424400670 + 0.02874372793i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.424400670 + 0.02874372793i\) |
\(L(1)\) |
\(\approx\) |
\(1.324590949 + 0.01708313827i\) |
\(L(1)\) |
\(\approx\) |
\(1.324590949 + 0.01708313827i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 \) |
good | 3 | \( 1 + (0.766 - 0.642i)T \) |
| 5 | \( 1 + (-0.342 + 0.939i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.984 - 0.173i)T \) |
| 17 | \( 1 + (-0.984 - 0.173i)T \) |
| 19 | \( 1 + (0.642 + 0.766i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 - iT \) |
| 41 | \( 1 + (-0.173 - 0.984i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (-0.939 + 0.342i)T \) |
| 59 | \( 1 + (-0.342 - 0.939i)T \) |
| 61 | \( 1 + (-0.984 + 0.173i)T \) |
| 67 | \( 1 + (-0.939 - 0.342i)T \) |
| 71 | \( 1 + (-0.766 + 0.642i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.342 - 0.939i)T \) |
| 83 | \( 1 + (-0.173 + 0.984i)T \) |
| 89 | \( 1 + (-0.342 - 0.939i)T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.00069557667531108320460309155, −27.061692880316060598388419468870, −26.42923368613594547568910661760, −25.15919710104855874222498855077, −24.236243217627056009962207234710, −23.51548752422532931280807397647, −21.87732579966151935642434374221, −21.03985213697993164801958789130, −20.36311441858752369611371751752, −19.48856327400749520986212760574, −18.18376728103079732010353879509, −16.87005003616050524376704683723, −15.94569572224789003397753245579, −15.16226472364089991055384710418, −13.75983598677692020287805473258, −13.224054202398360621552344911445, −11.42896031954789537663259929672, −10.7141508515129669135618990995, −9.01696231160891838727317638241, −8.55561735773124631536858408774, −7.426319711531525790530404691252, −5.36789701141913030808723472423, −4.463313542279449411551218679836, −3.28572952393999318160117894158, −1.49337150528905872150180721877,
1.78285579154032777036219471758, 2.88948646607384137708471005510, 4.27950856880398208136372033243, 6.05729993866503297749199110370, 7.33700591876534553343575451796, 8.03014181563563600311448314335, 9.26224504746678183270271829368, 10.74229250090494082078303796125, 11.71303460496478228675965349240, 12.95766345326454089711012454936, 14.036851566575071571541858204220, 14.96367456970123321244331024993, 15.60081055566421778573040558278, 17.58022033750093027153564520440, 18.34543995633244444548024989441, 18.93390177245816475575197771564, 20.38145917274717317828767419686, 20.8681519952655274706416332739, 22.4088841897396640588312062831, 23.30828864110016830469365971701, 24.324452109827303161397048678881, 25.24566230594052201038471554558, 26.17940308905170648000326329573, 26.94811118333235677151564040058, 28.11479394793465706487051627532