L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.900 + 0.433i)5-s + (0.900 + 0.433i)8-s + (−0.900 + 0.433i)10-s + (−0.623 + 0.781i)11-s + (0.623 − 0.781i)13-s + (−0.900 + 0.433i)16-s + (0.222 − 0.974i)17-s + 19-s + (0.222 − 0.974i)20-s + (−0.222 − 0.974i)22-s + (0.222 + 0.974i)23-s + (0.623 + 0.781i)25-s + (0.222 + 0.974i)26-s + ⋯ |
L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 − 0.974i)4-s + (0.900 + 0.433i)5-s + (0.900 + 0.433i)8-s + (−0.900 + 0.433i)10-s + (−0.623 + 0.781i)11-s + (0.623 − 0.781i)13-s + (−0.900 + 0.433i)16-s + (0.222 − 0.974i)17-s + 19-s + (0.222 − 0.974i)20-s + (−0.222 − 0.974i)22-s + (0.222 + 0.974i)23-s + (0.623 + 0.781i)25-s + (0.222 + 0.974i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.284 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.284 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.219652185 + 0.9102500826i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.219652185 + 0.9102500826i\) |
\(L(1)\) |
\(\approx\) |
\(0.9038644626 + 0.3925975818i\) |
\(L(1)\) |
\(\approx\) |
\(0.9038644626 + 0.3925975818i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.623 + 0.781i)T \) |
| 5 | \( 1 + (0.900 + 0.433i)T \) |
| 11 | \( 1 + (-0.623 + 0.781i)T \) |
| 13 | \( 1 + (0.623 - 0.781i)T \) |
| 17 | \( 1 + (0.222 - 0.974i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (0.222 + 0.974i)T \) |
| 29 | \( 1 + (0.222 - 0.974i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (-0.222 + 0.974i)T \) |
| 41 | \( 1 + (0.900 + 0.433i)T \) |
| 43 | \( 1 + (-0.900 + 0.433i)T \) |
| 47 | \( 1 + (-0.623 + 0.781i)T \) |
| 53 | \( 1 + (0.222 + 0.974i)T \) |
| 59 | \( 1 + (0.900 - 0.433i)T \) |
| 61 | \( 1 + (-0.222 + 0.974i)T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + (0.222 + 0.974i)T \) |
| 73 | \( 1 + (0.623 + 0.781i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.623 - 0.781i)T \) |
| 89 | \( 1 + (-0.623 - 0.781i)T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.08506031896688452015546448819, −26.62649502499334326934005948571, −26.10657631168013350997116677049, −24.97902124534904725050931857811, −23.9157604537244679613663848173, −22.47000292279971868012153309259, −21.3436567586817284799520328087, −20.999377481780721684840440926665, −19.77299611160369968380293745012, −18.661285705480357297826646897160, −17.92327486365335700641082375988, −16.77190343722071638499765031666, −16.088876275253987799647210404670, −14.13378347233710220854755583403, −13.28084542624787559603351975471, −12.30428074490307810147836921375, −11.01292655593038245107100427161, −10.132837149668176424281975970, −8.9900828533654905696972070552, −8.20938628091208579115107348071, −6.55768573587974566985587625923, −5.12201320137962859839804210789, −3.56638157548100251959127937470, −2.16489111688356202898283693798, −0.89643219470382860681351894080,
1.16479338495475741322263601014, 2.7708118428619932208098835354, 4.96465728301693316344549511373, 5.886419805729266949931442783881, 7.07987991371198341739698932099, 8.06800216372280144212055681177, 9.58112279470382385285403497269, 10.07839500990124649819281957184, 11.37948008693342891080458696476, 13.224341513874787975185253803482, 13.97346434640634940593673981266, 15.19366740791898415261468496937, 15.96428179469367293256382865720, 17.34434919820037332918018487846, 17.96904298287511344102490385920, 18.73397948902628187128308900482, 20.13348558674777273346941609063, 21.08222135475075872526476027363, 22.61652859475812803142486496603, 23.1341974087899829646055250545, 24.58624342121550399539338890581, 25.30015974884969979644418750326, 26.04098101334388010046298317094, 26.965381859992417394834327100828, 28.08262830171997910932535166892