L(s) = 1 | + (−0.826 − 0.563i)2-s + (0.365 + 0.930i)4-s + (0.955 − 0.294i)5-s + (0.222 − 0.974i)8-s + (−0.955 − 0.294i)10-s + (−0.0747 + 0.997i)11-s + (0.900 − 0.433i)13-s + (−0.733 + 0.680i)16-s + (−0.988 + 0.149i)17-s + (0.5 + 0.866i)19-s + (0.623 + 0.781i)20-s + (0.623 − 0.781i)22-s + (0.988 + 0.149i)23-s + (0.826 − 0.563i)25-s + (−0.988 − 0.149i)26-s + ⋯ |
L(s) = 1 | + (−0.826 − 0.563i)2-s + (0.365 + 0.930i)4-s + (0.955 − 0.294i)5-s + (0.222 − 0.974i)8-s + (−0.955 − 0.294i)10-s + (−0.0747 + 0.997i)11-s + (0.900 − 0.433i)13-s + (−0.733 + 0.680i)16-s + (−0.988 + 0.149i)17-s + (0.5 + 0.866i)19-s + (0.623 + 0.781i)20-s + (0.623 − 0.781i)22-s + (0.988 + 0.149i)23-s + (0.826 − 0.563i)25-s + (−0.988 − 0.149i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.886 - 0.462i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.886 - 0.462i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8710740534 - 0.2135615665i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8710740534 - 0.2135615665i\) |
\(L(1)\) |
\(\approx\) |
\(0.8524863310 - 0.1736436859i\) |
\(L(1)\) |
\(\approx\) |
\(0.8524863310 - 0.1736436859i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.826 - 0.563i)T \) |
| 5 | \( 1 + (0.955 - 0.294i)T \) |
| 11 | \( 1 + (-0.0747 + 0.997i)T \) |
| 13 | \( 1 + (0.900 - 0.433i)T \) |
| 17 | \( 1 + (-0.988 + 0.149i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.988 + 0.149i)T \) |
| 29 | \( 1 + (-0.623 - 0.781i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.365 - 0.930i)T \) |
| 41 | \( 1 + (-0.222 + 0.974i)T \) |
| 43 | \( 1 + (-0.222 - 0.974i)T \) |
| 47 | \( 1 + (0.826 + 0.563i)T \) |
| 53 | \( 1 + (-0.365 - 0.930i)T \) |
| 59 | \( 1 + (0.955 + 0.294i)T \) |
| 61 | \( 1 + (-0.365 + 0.930i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.623 + 0.781i)T \) |
| 73 | \( 1 + (-0.826 + 0.563i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.900 - 0.433i)T \) |
| 89 | \( 1 + (0.0747 + 0.997i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.3604438090366345511813179705, −26.973244773153388861882114547114, −26.33046522523681804750862594263, −25.42975487968468822379603364870, −24.53276650656432612318589178631, −23.66656933962049414769237559300, −22.335864793937917772120964128491, −21.27345581313370856362837279528, −20.18106505296821508289133936740, −18.927447573360848177021011619508, −18.21459755777650057933432852666, −17.27654999213501611176914264294, −16.30879596799621530564954231687, −15.306479807749359083144485794875, −14.03353498331441299769409272749, −13.35402686625603249397259899462, −11.28596080916438156940479833448, −10.63627512237271258444693714225, −9.24957276724889659406853093226, −8.64435353999156886976335998899, −7.00934538584630663993299287761, −6.20663552302135401180994557150, −5.05770389474620820703819284965, −2.86663095056923174095153061969, −1.3381310091934355626126419186,
1.395020838893411210088971658255, 2.55160647187024820802091897866, 4.183018575452513773746174822520, 5.84931426833977307846649169016, 7.17344352831192470362868354275, 8.47931433564995084203379509598, 9.485150924881992745153188596735, 10.31853679404343999738597711453, 11.454988650653885681256064130042, 12.78102009913089235413056633874, 13.43542754653002490671215553095, 15.10521369420137208233874661117, 16.306922196428561388447014739716, 17.39683020780692134964496334598, 17.97632930714710268290510089149, 19.025635527793111159794684636564, 20.47483346536900564700141765241, 20.71814773615794081717436144596, 21.97178285281184551513916509235, 22.94130128430194458307765777610, 24.635939352105343414569345111406, 25.329470672119905760381197056083, 26.15114366196109008548627490421, 27.212126831203919461067985616273, 28.42591746279868865837521226020