L(s) = 1 | + (0.433 + 0.900i)2-s + (−0.781 + 0.623i)3-s + (−0.623 + 0.781i)4-s + (−0.900 − 0.433i)6-s + (−0.781 + 0.623i)7-s + (−0.974 − 0.222i)8-s + (0.222 − 0.974i)9-s + (0.222 + 0.974i)11-s − i·12-s + (−0.974 + 0.222i)13-s + (−0.900 − 0.433i)14-s + (−0.222 − 0.974i)16-s − i·17-s + (0.974 − 0.222i)18-s + (0.623 − 0.781i)19-s + ⋯ |
L(s) = 1 | + (0.433 + 0.900i)2-s + (−0.781 + 0.623i)3-s + (−0.623 + 0.781i)4-s + (−0.900 − 0.433i)6-s + (−0.781 + 0.623i)7-s + (−0.974 − 0.222i)8-s + (0.222 − 0.974i)9-s + (0.222 + 0.974i)11-s − i·12-s + (−0.974 + 0.222i)13-s + (−0.900 − 0.433i)14-s + (−0.222 − 0.974i)16-s − i·17-s + (0.974 − 0.222i)18-s + (0.623 − 0.781i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.633 - 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.633 - 0.773i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.009716831788 + 0.004601159398i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.009716831788 + 0.004601159398i\) |
\(L(1)\) |
\(\approx\) |
\(0.4906362558 + 0.4865050768i\) |
\(L(1)\) |
\(\approx\) |
\(0.4906362558 + 0.4865050768i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.433 + 0.900i)T \) |
| 3 | \( 1 + (-0.781 + 0.623i)T \) |
| 7 | \( 1 + (-0.781 + 0.623i)T \) |
| 11 | \( 1 + (0.222 + 0.974i)T \) |
| 13 | \( 1 + (-0.974 + 0.222i)T \) |
| 17 | \( 1 - iT \) |
| 19 | \( 1 + (0.623 - 0.781i)T \) |
| 23 | \( 1 + (-0.433 + 0.900i)T \) |
| 31 | \( 1 + (0.900 - 0.433i)T \) |
| 37 | \( 1 + (0.974 + 0.222i)T \) |
| 41 | \( 1 - T \) |
| 43 | \( 1 + (0.433 - 0.900i)T \) |
| 47 | \( 1 + (-0.974 + 0.222i)T \) |
| 53 | \( 1 + (0.433 + 0.900i)T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + (-0.623 - 0.781i)T \) |
| 67 | \( 1 + (-0.974 - 0.222i)T \) |
| 71 | \( 1 + (-0.222 - 0.974i)T \) |
| 73 | \( 1 + (0.433 - 0.900i)T \) |
| 79 | \( 1 + (-0.222 + 0.974i)T \) |
| 83 | \( 1 + (-0.781 - 0.623i)T \) |
| 89 | \( 1 + (-0.900 + 0.433i)T \) |
| 97 | \( 1 + (-0.781 - 0.623i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.36055665493546925905783786045, −26.49035889946943191573299066232, −24.74159933598765040995754486841, −23.99619076242072264925481013788, −22.96899543162974540109824582332, −22.30998908723424259853111197635, −21.41972720907204654887932344914, −19.91568778131540262995667602633, −19.30427403054739655916657600275, −18.35939839596275537328976695261, −17.15963511295750049245376295797, −16.23058905048970901576897349212, −14.52605375653769431408703060413, −13.50205676001807605401546662700, −12.646109661560566591044236964980, −11.79886118037351821162674984678, −10.63043530818062127399281384405, −9.8834047898141994348352214283, −8.16001219428952536816080365850, −6.57286513507003141368954505594, −5.68144041748174983267696062548, −4.28032879106424170199741412766, −2.89744758884741724910380061243, −1.25310543310961030175202179328, −0.00430465762664938163049105682,
2.95909275191779879421904931490, 4.45145652547422099192836532732, 5.30178628167273139940377933761, 6.47279468571137071880931335899, 7.40360522765604004305049317978, 9.30308639477250047173703720243, 9.74202378329453266504130244915, 11.74879129438404439170670645138, 12.32309014252069134310194030355, 13.648021818613856584188681313468, 15.07599663208119695024502751352, 15.61286301242375240864358176722, 16.61896110587079750170353897659, 17.51404847859525285977147513404, 18.418234918171749143136405980478, 20.028114891763595216399709730756, 21.3979559758096627753479261052, 22.26226927866542451826051460791, 22.7285594739027890429320055117, 23.82281338802897681653696666473, 24.88851243463673382134900368875, 25.845798626095399149836816256659, 26.78424308953872182950290873729, 27.72986242727446661206131740715, 28.70234779836877061870675479796