L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)3-s + (0.309 + 0.951i)4-s + (−0.809 − 0.587i)5-s + (0.309 − 0.951i)6-s + (0.809 + 0.587i)7-s + (0.309 − 0.951i)8-s + (−0.809 + 0.587i)9-s + (0.309 + 0.951i)10-s + (−0.809 + 0.587i)12-s + (−0.309 + 0.951i)13-s + (−0.309 − 0.951i)14-s + (0.309 − 0.951i)15-s + (−0.809 + 0.587i)16-s + (0.309 − 0.951i)17-s + 18-s + ⋯ |
L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.309 + 0.951i)3-s + (0.309 + 0.951i)4-s + (−0.809 − 0.587i)5-s + (0.309 − 0.951i)6-s + (0.809 + 0.587i)7-s + (0.309 − 0.951i)8-s + (−0.809 + 0.587i)9-s + (0.309 + 0.951i)10-s + (−0.809 + 0.587i)12-s + (−0.309 + 0.951i)13-s + (−0.309 − 0.951i)14-s + (0.309 − 0.951i)15-s + (−0.809 + 0.587i)16-s + (0.309 − 0.951i)17-s + 18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00991 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.00991 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6376163955 + 0.6439684798i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6376163955 + 0.6439684798i\) |
\(L(1)\) |
\(\approx\) |
\(0.7324133858 + 0.1618182535i\) |
\(L(1)\) |
\(\approx\) |
\(0.7324133858 + 0.1618182535i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 131 | \( 1 \) |
good | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 3 | \( 1 + (0.309 + 0.951i)T \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 7 | \( 1 + (0.809 + 0.587i)T \) |
| 13 | \( 1 + (-0.309 + 0.951i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.809 + 0.587i)T \) |
| 41 | \( 1 + (0.809 + 0.587i)T \) |
| 43 | \( 1 + (0.809 - 0.587i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (-0.809 - 0.587i)T \) |
| 59 | \( 1 + (0.309 + 0.951i)T \) |
| 61 | \( 1 + (-0.309 + 0.951i)T \) |
| 67 | \( 1 + (0.809 + 0.587i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + (0.309 + 0.951i)T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 + (-0.809 - 0.587i)T \) |
| 89 | \( 1 + (-0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.809 - 0.587i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.09965664227761587593027862587, −19.71718309105473355885985281283, −18.92472804673151525789474058406, −18.18328431615350547781076223931, −17.74039419916142472951403940770, −16.98308324495111575705339176087, −16.0324054354005307918465907112, −15.15557232470950957807115424646, −14.41723787836307839808712353605, −14.17866721927458039550584604128, −12.871377091479532782910602552982, −12.056391733215122985408496683815, −11.08067990372985607651175146979, −10.663102812814610113698715956196, −9.59195230266282311953612353906, −8.44411331395764010137293874329, −7.85550675976852486117077070901, −7.55045653926556580201252118201, −6.6634086673351387183830908483, −5.844905873102684164628994546757, −4.77509651432944974291142701503, −3.51167500929862941615904560789, −2.51083621374953457295095315532, −1.424421281759182472829784917064, −0.51355757356015184934153822588,
1.11469193418776580264224322235, 2.26824495968072941417046667778, 3.13710655394231932907222332354, 4.13116547449861679195920831723, 4.70772808458148217598730142743, 5.69764195173802702071245511857, 7.35038839726831623909952253930, 7.886263704685160067058685928182, 8.63363427788173099821021306507, 9.476317962306504047473335046036, 9.73245833977707195248603867523, 11.16845234688487387625043958900, 11.58664755764028760383272464347, 11.9514452668980825375588208747, 13.2396527466626222435111285265, 14.15646773639695575898393211607, 15.1095018930214363764693897614, 15.833067090188424663596474465095, 16.36557031321468230439783879808, 17.08525679866973975430381046444, 17.94837539081807684275434879451, 18.86580716764191291263829988018, 19.45562228768486987178335482070, 20.27250907702203442655647155072, 20.82442782354962983123677979657