L(s) = 1 | + (0.0241 + 0.999i)2-s + (−0.989 − 0.144i)3-s + (−0.998 + 0.0483i)4-s + (−0.168 − 0.985i)5-s + (0.120 − 0.992i)6-s + (−0.906 + 0.421i)7-s + (−0.0724 − 0.997i)8-s + (0.958 + 0.285i)9-s + (0.981 − 0.192i)10-s + (0.995 + 0.0965i)12-s + (0.485 − 0.873i)13-s + (−0.443 − 0.896i)14-s + (0.0241 + 0.999i)15-s + (0.995 − 0.0965i)16-s + (−0.748 + 0.663i)17-s + (−0.262 + 0.964i)18-s + ⋯ |
L(s) = 1 | + (0.0241 + 0.999i)2-s + (−0.989 − 0.144i)3-s + (−0.998 + 0.0483i)4-s + (−0.168 − 0.985i)5-s + (0.120 − 0.992i)6-s + (−0.906 + 0.421i)7-s + (−0.0724 − 0.997i)8-s + (0.958 + 0.285i)9-s + (0.981 − 0.192i)10-s + (0.995 + 0.0965i)12-s + (0.485 − 0.873i)13-s + (−0.443 − 0.896i)14-s + (0.0241 + 0.999i)15-s + (0.995 − 0.0965i)16-s + (−0.748 + 0.663i)17-s + (−0.262 + 0.964i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0528i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0528i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6197313628 + 0.01639732845i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6197313628 + 0.01639732845i\) |
\(L(1)\) |
\(\approx\) |
\(0.5873593106 + 0.1622251993i\) |
\(L(1)\) |
\(\approx\) |
\(0.5873593106 + 0.1622251993i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 131 | \( 1 \) |
good | 2 | \( 1 + (0.0241 + 0.999i)T \) |
| 3 | \( 1 + (-0.989 - 0.144i)T \) |
| 5 | \( 1 + (-0.168 - 0.985i)T \) |
| 7 | \( 1 + (-0.906 + 0.421i)T \) |
| 13 | \( 1 + (0.485 - 0.873i)T \) |
| 17 | \( 1 + (-0.748 + 0.663i)T \) |
| 19 | \( 1 + (0.995 + 0.0965i)T \) |
| 23 | \( 1 + (-0.0724 + 0.997i)T \) |
| 29 | \( 1 + (-0.607 + 0.794i)T \) |
| 31 | \( 1 + (-0.0724 - 0.997i)T \) |
| 37 | \( 1 + (0.779 - 0.626i)T \) |
| 41 | \( 1 + (-0.748 - 0.663i)T \) |
| 43 | \( 1 + (-0.443 + 0.896i)T \) |
| 47 | \( 1 + (0.0241 + 0.999i)T \) |
| 53 | \( 1 + (-0.809 + 0.587i)T \) |
| 59 | \( 1 + (0.399 + 0.916i)T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + (-0.443 - 0.896i)T \) |
| 71 | \( 1 + (-0.0724 - 0.997i)T \) |
| 73 | \( 1 + (0.309 - 0.951i)T \) |
| 79 | \( 1 + (-0.168 - 0.985i)T \) |
| 83 | \( 1 + (0.779 + 0.626i)T \) |
| 89 | \( 1 + (-0.809 + 0.587i)T \) |
| 97 | \( 1 + (-0.906 + 0.421i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.66880054034092985812928071702, −20.03558071649590050525555695687, −19.006884772574243228114164119020, −18.57620829458807610612483359101, −17.98298388228779998691275012407, −17.08240571164153145783375019383, −16.26682974188615223875016319824, −15.56645453244280451584457020485, −14.46022732660657141042841975347, −13.62707096102000666572885689226, −13.05329350638663183368289341013, −11.98955420110206560185253756748, −11.44377435438295260857171655215, −10.89494471344901904129954943094, −9.94350930781498636877389930400, −9.678973743876742636288723912316, −8.457110307483176481493365575, −7.06011143227731913726024934199, −6.65367089333559810521825466648, −5.64183159405950613776248080863, −4.57906246149582099395574256894, −3.83412433069842647943141063901, −3.06418398035802836276183262940, −1.989785846036269000104213852251, −0.69390593195930845554828083693,
0.45372290141664412261272051586, 1.52753018332094641417824031809, 3.38088719233037549437095395359, 4.21478682925221473845077923621, 5.21831797326278489621701687585, 5.74674826297837318485641913495, 6.34173366319503060379856548160, 7.42096276976091379231744530206, 8.052121310735619233590339315323, 9.17136035194960698370499206315, 9.60524798093651512578449164666, 10.67954028776986472056852120591, 11.741777445679701476332856003586, 12.596796241347174872025034205690, 13.07559348604219316071097517555, 13.6011447375759838982463951426, 15.14460972212023970057087074663, 15.60426567011393736516294633740, 16.298857283225308826675195871662, 16.74189898983899909591706185074, 17.689013725012755288690455128872, 18.09667633168182853622216156441, 19.06777745593925201541276791584, 19.80703234000719915051810978174, 20.850405998758038518805312944704