L(s) = 1 | + (−0.970 + 0.239i)2-s + (0.485 − 0.873i)3-s + (0.885 − 0.464i)4-s + (0.981 + 0.192i)5-s + (−0.262 + 0.964i)6-s + (−0.836 + 0.548i)7-s + (−0.748 + 0.663i)8-s + (−0.527 − 0.849i)9-s + (−0.998 + 0.0483i)10-s + (0.0241 − 0.999i)12-s + (−0.779 − 0.626i)13-s + (0.681 − 0.732i)14-s + (0.644 − 0.764i)15-s + (0.568 − 0.822i)16-s + (−0.943 + 0.331i)17-s + (0.715 + 0.698i)18-s + ⋯ |
L(s) = 1 | + (−0.970 + 0.239i)2-s + (0.485 − 0.873i)3-s + (0.885 − 0.464i)4-s + (0.981 + 0.192i)5-s + (−0.262 + 0.964i)6-s + (−0.836 + 0.548i)7-s + (−0.748 + 0.663i)8-s + (−0.527 − 0.849i)9-s + (−0.998 + 0.0483i)10-s + (0.0241 − 0.999i)12-s + (−0.779 − 0.626i)13-s + (0.681 − 0.732i)14-s + (0.644 − 0.764i)15-s + (0.568 − 0.822i)16-s + (−0.943 + 0.331i)17-s + (0.715 + 0.698i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.852 - 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1441 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.852 - 0.522i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.155764661 - 0.3257559292i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.155764661 - 0.3257559292i\) |
\(L(1)\) |
\(\approx\) |
\(0.8708217126 - 0.1303282263i\) |
\(L(1)\) |
\(\approx\) |
\(0.8708217126 - 0.1303282263i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 131 | \( 1 \) |
good | 2 | \( 1 + (-0.970 + 0.239i)T \) |
| 3 | \( 1 + (0.485 - 0.873i)T \) |
| 5 | \( 1 + (0.981 + 0.192i)T \) |
| 7 | \( 1 + (-0.836 + 0.548i)T \) |
| 13 | \( 1 + (-0.779 - 0.626i)T \) |
| 17 | \( 1 + (-0.943 + 0.331i)T \) |
| 19 | \( 1 + (0.958 - 0.285i)T \) |
| 23 | \( 1 + (-0.399 + 0.916i)T \) |
| 29 | \( 1 + (0.644 + 0.764i)T \) |
| 31 | \( 1 + (0.861 + 0.506i)T \) |
| 37 | \( 1 + (0.989 + 0.144i)T \) |
| 41 | \( 1 + (0.607 - 0.794i)T \) |
| 43 | \( 1 + (-0.485 + 0.873i)T \) |
| 47 | \( 1 + (0.0724 - 0.997i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.568 - 0.822i)T \) |
| 61 | \( 1 + (0.809 + 0.587i)T \) |
| 67 | \( 1 + (-0.485 - 0.873i)T \) |
| 71 | \( 1 + (-0.215 + 0.976i)T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + (0.485 - 0.873i)T \) |
| 83 | \( 1 + (0.715 - 0.698i)T \) |
| 89 | \( 1 + (-0.809 - 0.587i)T \) |
| 97 | \( 1 + (0.998 + 0.0483i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.71670544943255951102421747807, −19.97243942822591453877653793581, −19.517524317604073976180649198793, −18.5625017174592893100337769501, −17.70024164837280229132251885722, −16.92078480528501312881701973483, −16.42283732169830558460464588068, −15.82084218550870706544660589742, −14.8368120771185628875237948971, −13.911826650071669598761994046653, −13.30579363898255351528365908369, −12.25641364588550728140671574336, −11.31591927098881192775406753891, −10.38176159164227415475007750540, −9.802440143322426187942386498031, −9.46287395893294649932264927689, −8.648923628273294876654218726805, −7.70153825024247380447818184664, −6.72248906719934705070165981170, −6.00652452003397355958869511176, −4.73394169569258716019355282288, −3.89107969527438191157011947277, −2.618167786305085446826191737982, −2.37526109332722623356933997281, −0.84622589964665553440582087796,
0.77282067117283618438972443878, 1.888434455403735967877568038728, 2.60428305497318478844882136, 3.221475676707380656755402327003, 5.23989490621325602054505848508, 5.97459328519092119119725108047, 6.69885315071932431328991218944, 7.28057499045274397033457276715, 8.297199034723554541574329988452, 9.040939760992255578886007256954, 9.67267427418842941946824351494, 10.28627084823577231755983348601, 11.46892093941041854335435418259, 12.26206493273187929902366421940, 13.076227415034940976590395504902, 13.79534846043131813051955444113, 14.70244800053220070189283744115, 15.37762457838034454148958839285, 16.20829930657647788704537283123, 17.23720739626948853245281989488, 17.8859640303543666455712797778, 18.16622800438408166795228408931, 19.15268213985113579869441762244, 19.7705622030923228052770743199, 20.197944307203284122896349594332