L(s) = 1 | + (0.669 − 0.743i)2-s + (−0.104 + 0.994i)3-s + (−0.104 − 0.994i)4-s + (−0.309 + 0.951i)5-s + (0.669 + 0.743i)6-s + (−0.104 − 0.994i)7-s + (−0.809 − 0.587i)8-s + (−0.978 − 0.207i)9-s + (0.5 + 0.866i)10-s + 12-s + (−0.809 − 0.587i)14-s + (−0.913 − 0.406i)15-s + (−0.978 + 0.207i)16-s + (−0.669 − 0.743i)17-s + (−0.809 + 0.587i)18-s + (0.913 − 0.406i)19-s + ⋯ |
L(s) = 1 | + (0.669 − 0.743i)2-s + (−0.104 + 0.994i)3-s + (−0.104 − 0.994i)4-s + (−0.309 + 0.951i)5-s + (0.669 + 0.743i)6-s + (−0.104 − 0.994i)7-s + (−0.809 − 0.587i)8-s + (−0.978 − 0.207i)9-s + (0.5 + 0.866i)10-s + 12-s + (−0.809 − 0.587i)14-s + (−0.913 − 0.406i)15-s + (−0.978 + 0.207i)16-s + (−0.669 − 0.743i)17-s + (−0.809 + 0.587i)18-s + (0.913 − 0.406i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.841 - 0.540i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.841 - 0.540i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2688009297 - 0.9147581399i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2688009297 - 0.9147581399i\) |
\(L(1)\) |
\(\approx\) |
\(0.9830675615 - 0.3233505853i\) |
\(L(1)\) |
\(\approx\) |
\(0.9830675615 - 0.3233505853i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.669 - 0.743i)T \) |
| 3 | \( 1 + (-0.104 + 0.994i)T \) |
| 5 | \( 1 + (-0.309 + 0.951i)T \) |
| 7 | \( 1 + (-0.104 - 0.994i)T \) |
| 17 | \( 1 + (-0.669 - 0.743i)T \) |
| 19 | \( 1 + (0.913 - 0.406i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.913 - 0.406i)T \) |
| 31 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.913 - 0.406i)T \) |
| 41 | \( 1 + (-0.104 + 0.994i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.809 + 0.587i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.104 + 0.994i)T \) |
| 61 | \( 1 + (-0.669 - 0.743i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (-0.669 - 0.743i)T \) |
| 73 | \( 1 + (-0.809 + 0.587i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (0.309 - 0.951i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.978 + 0.207i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.58244757806177551600147400996, −27.5490141308252314196230120950, −26.03255657594247387754851739422, −25.16119266897235810491678561038, −24.36968969594391601591171684564, −23.86935943566630305852604179090, −22.72524820050539308549258559049, −21.78534544619400926973569036232, −20.5446177140381714312651308755, −19.449275222879658164656294058241, −18.18312461256030071199145850923, −17.31672269234023615960499196585, −16.21906306074693168357058635540, −15.32006213607362196654491749699, −14.03961552014453934879197488428, −12.99690164680568231115670479176, −12.30716370964788708540060851088, −11.526123403454739292822514107645, −9.06433514156026507604850797279, −8.29486411873791397533568415503, −7.23399210950028704354019975196, −5.896938407008474942721877033377, −5.181199599897408348606242316822, −3.5029368480719583222694772598, −1.84711440417369159310719873576,
0.28317715510551826719383644078, 2.60982754672863099694123826398, 3.70346682625781276243219448399, 4.545449412306641392183600679142, 5.98351559914737906332328141265, 7.29700027573006472304477728453, 9.267482161500238269824565992417, 10.276214046157514990982187478020, 10.99321912086228524911687075059, 11.81652440617070357032608506798, 13.52589274715046289864982135764, 14.28776920187429025235632893576, 15.26763611632366225368790379736, 16.200099578306047086090128697039, 17.67581471861179019802730034025, 18.864278995588218382366683299056, 20.120166902474698812420506274361, 20.5362519727027097225071206662, 21.93882934683405612239588119926, 22.51136758582699770370866898202, 23.20537933398097268391853559892, 24.38355910180886772523794031390, 26.14493089373820224898909150733, 26.75363510257202075897430219784, 27.65226827482767593565341201702