L(s) = 1 | + (−0.743 + 0.669i)2-s + (−0.104 − 0.994i)3-s + (0.104 − 0.994i)4-s + (0.951 − 0.309i)5-s + (0.743 + 0.669i)6-s + (0.994 + 0.104i)7-s + (0.587 + 0.809i)8-s + (−0.978 + 0.207i)9-s + (−0.5 + 0.866i)10-s − 12-s + (−0.809 + 0.587i)14-s + (−0.406 − 0.913i)15-s + (−0.978 − 0.207i)16-s + (0.669 − 0.743i)17-s + (0.587 − 0.809i)18-s + (−0.406 + 0.913i)19-s + ⋯ |
L(s) = 1 | + (−0.743 + 0.669i)2-s + (−0.104 − 0.994i)3-s + (0.104 − 0.994i)4-s + (0.951 − 0.309i)5-s + (0.743 + 0.669i)6-s + (0.994 + 0.104i)7-s + (0.587 + 0.809i)8-s + (−0.978 + 0.207i)9-s + (−0.5 + 0.866i)10-s − 12-s + (−0.809 + 0.587i)14-s + (−0.406 − 0.913i)15-s + (−0.978 − 0.207i)16-s + (0.669 − 0.743i)17-s + (0.587 − 0.809i)18-s + (−0.406 + 0.913i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.833 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 143 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.833 - 0.551i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8766079892 - 0.2637763668i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8766079892 - 0.2637763668i\) |
\(L(1)\) |
\(\approx\) |
\(0.8825372135 - 0.1160116373i\) |
\(L(1)\) |
\(\approx\) |
\(0.8825372135 - 0.1160116373i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.743 + 0.669i)T \) |
| 3 | \( 1 + (-0.104 - 0.994i)T \) |
| 5 | \( 1 + (0.951 - 0.309i)T \) |
| 7 | \( 1 + (0.994 + 0.104i)T \) |
| 17 | \( 1 + (0.669 - 0.743i)T \) |
| 19 | \( 1 + (-0.406 + 0.913i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.913 + 0.406i)T \) |
| 31 | \( 1 + (-0.951 - 0.309i)T \) |
| 37 | \( 1 + (0.406 + 0.913i)T \) |
| 41 | \( 1 + (0.994 - 0.104i)T \) |
| 43 | \( 1 + (-0.5 - 0.866i)T \) |
| 47 | \( 1 + (-0.587 - 0.809i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (-0.994 - 0.104i)T \) |
| 61 | \( 1 + (-0.669 + 0.743i)T \) |
| 67 | \( 1 + (0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.743 - 0.669i)T \) |
| 73 | \( 1 + (-0.587 + 0.809i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.951 + 0.309i)T \) |
| 89 | \( 1 + (-0.866 - 0.5i)T \) |
| 97 | \( 1 + (0.207 + 0.978i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.1132557472110240280777773894, −27.63796556630704528166197558997, −26.45737064212606567524269008559, −25.90830543882107173270067537079, −24.80857566553370399985384853140, −23.1987629199744577624764224979, −21.80071013029305654479127141277, −21.44522022974289736857080822017, −20.632230734538953080386841119851, −19.51780163781647301723071754400, −18.13875042118216556818228475428, −17.37284360047381814808864586769, −16.686645822121247441984646646463, −15.212286353877362067263563703889, −14.19277422626013578363873222038, −12.86387909261407860706472233994, −11.27497939072077679085857498171, −10.79758784481136041540717346349, −9.669283177282373776403888347991, −8.88105141644993981823046844090, −7.54578831414371802410182117350, −5.80331520194776495455056968828, −4.46053038207032462627506660470, −3.06812207846606327672037713149, −1.68560080491862384345333229309,
1.23306566585621173014053020085, 2.22163765692337832728631307696, 5.092538290966970517489934369186, 5.895774455771277304126222363031, 7.10617164278159807029129240444, 8.148652793604465932190171176462, 9.06364468209146550006400269368, 10.41277159186000547067246220498, 11.59304490752666338858938785389, 12.95994242141706174132389837351, 14.157824592514787280794596905604, 14.728588787023337383251433964620, 16.61075039435642587190234596603, 17.11898562925582544258564773450, 18.34458776986875095185878404142, 18.527420261110101771822804917299, 20.12649417649757013368171128746, 20.96018849440485087883834083833, 22.58751423447173519885021148470, 23.700694145027805020649109649669, 24.526425349115022364705187818122, 25.12500179351459219900242510952, 25.935460420396653746172675455103, 27.30547024527525908534675919510, 28.15222276290141878711468060143