L(s) = 1 | + (0.354 + 0.935i)2-s + (0.568 − 0.822i)3-s + (−0.748 + 0.663i)4-s + (−0.120 − 0.992i)5-s + (0.970 + 0.239i)6-s + (−0.885 − 0.464i)7-s + (−0.885 − 0.464i)8-s + (−0.354 − 0.935i)9-s + (0.885 − 0.464i)10-s + (0.354 − 0.935i)11-s + (0.120 + 0.992i)12-s + (0.120 − 0.992i)14-s + (−0.885 − 0.464i)15-s + (0.120 − 0.992i)16-s + (0.885 + 0.464i)17-s + (0.748 − 0.663i)18-s + ⋯ |
L(s) = 1 | + (0.354 + 0.935i)2-s + (0.568 − 0.822i)3-s + (−0.748 + 0.663i)4-s + (−0.120 − 0.992i)5-s + (0.970 + 0.239i)6-s + (−0.885 − 0.464i)7-s + (−0.885 − 0.464i)8-s + (−0.354 − 0.935i)9-s + (0.885 − 0.464i)10-s + (0.354 − 0.935i)11-s + (0.120 + 0.992i)12-s + (0.120 − 0.992i)14-s + (−0.885 − 0.464i)15-s + (0.120 − 0.992i)16-s + (0.885 + 0.464i)17-s + (0.748 − 0.663i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.656 - 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.656 - 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.104777976 - 0.5034074367i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.104777976 - 0.5034074367i\) |
\(L(1)\) |
\(\approx\) |
\(1.173533063 - 0.1188984076i\) |
\(L(1)\) |
\(\approx\) |
\(1.173533063 - 0.1188984076i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (0.354 + 0.935i)T \) |
| 3 | \( 1 + (0.568 - 0.822i)T \) |
| 5 | \( 1 + (-0.120 - 0.992i)T \) |
| 7 | \( 1 + (-0.885 - 0.464i)T \) |
| 11 | \( 1 + (0.354 - 0.935i)T \) |
| 17 | \( 1 + (0.885 + 0.464i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + (-0.354 - 0.935i)T \) |
| 31 | \( 1 + (0.970 + 0.239i)T \) |
| 37 | \( 1 + (0.970 + 0.239i)T \) |
| 41 | \( 1 + (-0.568 + 0.822i)T \) |
| 43 | \( 1 + (-0.970 + 0.239i)T \) |
| 47 | \( 1 + (0.748 + 0.663i)T \) |
| 53 | \( 1 + (0.885 + 0.464i)T \) |
| 59 | \( 1 + (-0.120 - 0.992i)T \) |
| 61 | \( 1 + (0.885 - 0.464i)T \) |
| 67 | \( 1 + (0.748 + 0.663i)T \) |
| 71 | \( 1 + (-0.568 + 0.822i)T \) |
| 73 | \( 1 + (0.354 - 0.935i)T \) |
| 79 | \( 1 + (-0.748 - 0.663i)T \) |
| 83 | \( 1 + (-0.568 - 0.822i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (-0.120 + 0.992i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.70606718959656006472473718731, −26.973708489422545726532621422706, −25.85212905215967989683609788672, −25.20516328729682157598266430013, −23.24958308466661218911591554374, −22.65578147991068820035560462027, −21.86393332316879774885877718659, −21.023120347603197813289624919914, −19.91960716272246769929602633985, −19.175509307699671639148743073010, −18.38306988548941576981180337713, −16.8536165540860006234284913506, −15.29216971277773726321092931134, −14.878616095206497619887603636224, −13.80735724352431865063086943256, −12.63642021490809190671843414262, −11.49000664026208161572484191128, −10.32682633560728548994956543822, −9.757650563032016742015172383721, −8.69281111433198665734361967063, −6.94498081755422707423010135494, −5.480707160035298563225969667, −4.11559400731454537962159302133, −3.14993662740459932858167959420, −2.28364497545029478106107681524,
0.87142293889085359309468511087, 3.12584966775504834103670446799, 4.19106485432020472178897601787, 5.82165281477140183653201183004, 6.65539861397261889131629379250, 7.92975994981092918564345269010, 8.648316892058704431471223857386, 9.67466402615091589866249375569, 11.82481177856335109249342399406, 12.938615882709883571768722298564, 13.31107484687123055266802127570, 14.42556164508728938408831435822, 15.55225951465972823072755828294, 16.77841386536151134077251908106, 17.14698103647915285569137854238, 18.80277450324833091325002207398, 19.415898043115133800668402647943, 20.68565722711301505439864084397, 21.67976783007577297412526485016, 23.257895643057651352732190063401, 23.54804507740650919164022639524, 24.75509680485978008180818296186, 25.1950350119481762235101102942, 26.23921938242376943863022032461, 27.10985892255254258594565384212