L(s) = 1 | + (0.200 + 0.979i)2-s + (0.987 + 0.160i)3-s + (−0.919 + 0.391i)4-s + (0.970 − 0.239i)5-s + (0.0402 + 0.999i)6-s + (−0.428 + 0.903i)7-s + (−0.568 − 0.822i)8-s + (0.948 + 0.316i)9-s + (0.428 + 0.903i)10-s + (−0.948 + 0.316i)11-s + (−0.970 + 0.239i)12-s + (−0.970 − 0.239i)14-s + (0.996 − 0.0804i)15-s + (0.692 − 0.721i)16-s + (0.428 − 0.903i)17-s + (−0.120 + 0.992i)18-s + ⋯ |
L(s) = 1 | + (0.200 + 0.979i)2-s + (0.987 + 0.160i)3-s + (−0.919 + 0.391i)4-s + (0.970 − 0.239i)5-s + (0.0402 + 0.999i)6-s + (−0.428 + 0.903i)7-s + (−0.568 − 0.822i)8-s + (0.948 + 0.316i)9-s + (0.428 + 0.903i)10-s + (−0.948 + 0.316i)11-s + (−0.970 + 0.239i)12-s + (−0.970 − 0.239i)14-s + (0.996 − 0.0804i)15-s + (0.692 − 0.721i)16-s + (0.428 − 0.903i)17-s + (−0.120 + 0.992i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.181 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 169 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.181 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.062803255 + 1.277278199i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.062803255 + 1.277278199i\) |
\(L(1)\) |
\(\approx\) |
\(1.219693978 + 0.8686215854i\) |
\(L(1)\) |
\(\approx\) |
\(1.219693978 + 0.8686215854i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 \) |
good | 2 | \( 1 + (0.200 + 0.979i)T \) |
| 3 | \( 1 + (0.987 + 0.160i)T \) |
| 5 | \( 1 + (0.970 - 0.239i)T \) |
| 7 | \( 1 + (-0.428 + 0.903i)T \) |
| 11 | \( 1 + (-0.948 + 0.316i)T \) |
| 17 | \( 1 + (0.428 - 0.903i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.200 - 0.979i)T \) |
| 31 | \( 1 + (-0.885 - 0.464i)T \) |
| 37 | \( 1 + (0.845 - 0.534i)T \) |
| 41 | \( 1 + (-0.987 - 0.160i)T \) |
| 43 | \( 1 + (-0.845 - 0.534i)T \) |
| 47 | \( 1 + (-0.120 - 0.992i)T \) |
| 53 | \( 1 + (0.568 + 0.822i)T \) |
| 59 | \( 1 + (-0.692 - 0.721i)T \) |
| 61 | \( 1 + (-0.996 - 0.0804i)T \) |
| 67 | \( 1 + (0.919 + 0.391i)T \) |
| 71 | \( 1 + (0.632 - 0.774i)T \) |
| 73 | \( 1 + (0.748 + 0.663i)T \) |
| 79 | \( 1 + (0.120 + 0.992i)T \) |
| 83 | \( 1 + (0.354 - 0.935i)T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.278 - 0.960i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.20319790169046858202741975537, −26.19467048687067675990501524423, −25.85952595697823253055964653777, −24.25846717643866989934225359776, −23.47128363496170716134701122615, −22.08617996907876675849132910954, −21.38017213684642330364495282230, −20.42395040790569610030655983369, −19.775731535927897944237257480668, −18.616229138297409882005409052462, −17.96539367738988439840672776154, −16.558523778309130006497777155270, −14.93581893884601109011611114812, −14.01899750188457363615676879016, −13.29405453004478864018310328303, −12.66785223034238733556989561507, −10.78333225009465260462011074618, −10.13516207298148809939080015994, −9.20637050181841924257800126342, −7.993294576027509366836283509734, −6.51871653447389976830153509205, −4.987836910306621917094559664258, −3.53753168760157029866309357786, −2.66856096725923485307582611851, −1.387466249789245342976251334342,
2.17690016099572181953701858759, 3.433034326381149436010398006, 5.05625431128930705745328866333, 5.8625189855648994287219832284, 7.33589652194084465662605561957, 8.32222192571184584402619135339, 9.47854162228245550627054188373, 9.89012385276588746782017672091, 12.28451379335134549734633315061, 13.26323844598732868799123383490, 13.9278360040404141155603355919, 15.034483239678013074862669980439, 15.81567510620216113014836587638, 16.757449886856285175930071875736, 18.33399678855779141129982338927, 18.521355841511062349742008094873, 20.26171384224575701201082109421, 21.28577032846314578075390880881, 21.91894661530608209698490196229, 23.115717700042912657055233795612, 24.43419062330036711938604214680, 25.14872220145419031571033910611, 25.65234041377456314455075945742, 26.48877165916521532321404697764, 27.60231516057998360393954653699