L(s) = 1 | + (0.766 − 0.642i)2-s + (0.173 − 0.984i)4-s + (−0.173 − 0.984i)7-s + (−0.5 − 0.866i)8-s + (0.939 + 0.342i)11-s + (−0.766 − 0.642i)13-s + (−0.766 − 0.642i)14-s + (−0.939 − 0.342i)16-s + (−0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s + (0.939 − 0.342i)22-s + (0.173 − 0.984i)23-s − 26-s − 28-s + (−0.766 + 0.642i)29-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (0.173 − 0.984i)4-s + (−0.173 − 0.984i)7-s + (−0.5 − 0.866i)8-s + (0.939 + 0.342i)11-s + (−0.766 − 0.642i)13-s + (−0.766 − 0.642i)14-s + (−0.939 − 0.342i)16-s + (−0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s + (0.939 − 0.342i)22-s + (0.173 − 0.984i)23-s − 26-s − 28-s + (−0.766 + 0.642i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4963171779 - 2.094126837i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4963171779 - 2.094126837i\) |
\(L(1)\) |
\(\approx\) |
\(1.133095829 - 0.9399209549i\) |
\(L(1)\) |
\(\approx\) |
\(1.133095829 - 0.9399209549i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.766 - 0.642i)T \) |
| 7 | \( 1 + (-0.173 - 0.984i)T \) |
| 11 | \( 1 + (0.939 + 0.342i)T \) |
| 13 | \( 1 + (-0.766 - 0.642i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.173 - 0.984i)T \) |
| 29 | \( 1 + (-0.766 + 0.642i)T \) |
| 31 | \( 1 + (0.173 - 0.984i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.766 - 0.642i)T \) |
| 43 | \( 1 + (0.939 + 0.342i)T \) |
| 47 | \( 1 + (0.173 + 0.984i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.939 - 0.342i)T \) |
| 61 | \( 1 + (0.173 + 0.984i)T \) |
| 67 | \( 1 + (-0.766 - 0.642i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.766 - 0.642i)T \) |
| 83 | \( 1 + (0.766 - 0.642i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (0.939 + 0.342i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−28.98340498049403409930974168135, −27.50952569073379679853562594519, −26.6615249144601741069566227720, −25.32060093896823256213707824712, −24.853546658783447052200357050757, −23.85082871342788068006212009369, −22.638738626220733469917559148450, −21.92573632804805770504762222125, −21.10335772416814639788233113893, −19.71060452670389183956841588453, −18.54737511436443375003198086720, −17.258536344998870228921851320889, −16.38097775414134817961881940072, −15.29116638289779700894982500710, −14.4470707535614744065304072897, −13.392139593721799755154849165236, −12.10605247635041217188435943035, −11.543947979090749751640688906858, −9.497320459087655292317069352389, −8.52393488083948691486034627981, −7.10905710256079801543947719189, −6.09679911700558641136247035952, −4.96229911415734891772758155160, −3.62810576117823645306201269676, −2.22173311302235178481761845076,
0.64019134318378091277318118665, 2.2508116295022876473626510607, 3.782424763935420470993633398511, 4.664181584200685602781115182557, 6.21867347776775457475279305251, 7.26977525129123372727977851026, 9.12794621151529522980012270549, 10.303765649026193849108342992917, 11.12756726206280043446001825817, 12.47390627696760827919818626851, 13.22287529022492149969555677864, 14.44619164576971377439931247618, 15.168996254085331556803317493875, 16.69642888803396124682928713797, 17.70119541487532359548618214773, 19.2931111843094577177368679081, 19.891012961829423226243049938546, 20.76541503492328230995923056640, 22.11760331823383847298515306363, 22.61901001931390962493397691824, 23.82838759525298120125562942136, 24.545256173596679549590432036726, 25.88498156065350891856336572444, 27.12235562413353914508715713025, 28.027902469002063551080936703753