Properties

Label 1-135-135.74-r1-0-0
Degree $1$
Conductor $135$
Sign $-0.893 - 0.448i$
Analytic cond. $14.5077$
Root an. cond. $14.5077$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.766 − 0.642i)2-s + (0.173 − 0.984i)4-s + (−0.173 − 0.984i)7-s + (−0.5 − 0.866i)8-s + (0.939 + 0.342i)11-s + (−0.766 − 0.642i)13-s + (−0.766 − 0.642i)14-s + (−0.939 − 0.342i)16-s + (−0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s + (0.939 − 0.342i)22-s + (0.173 − 0.984i)23-s − 26-s − 28-s + (−0.766 + 0.642i)29-s + ⋯
L(s)  = 1  + (0.766 − 0.642i)2-s + (0.173 − 0.984i)4-s + (−0.173 − 0.984i)7-s + (−0.5 − 0.866i)8-s + (0.939 + 0.342i)11-s + (−0.766 − 0.642i)13-s + (−0.766 − 0.642i)14-s + (−0.939 − 0.342i)16-s + (−0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s + (0.939 − 0.342i)22-s + (0.173 − 0.984i)23-s − 26-s − 28-s + (−0.766 + 0.642i)29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(135\)    =    \(3^{3} \cdot 5\)
Sign: $-0.893 - 0.448i$
Analytic conductor: \(14.5077\)
Root analytic conductor: \(14.5077\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{135} (74, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 135,\ (1:\ ),\ -0.893 - 0.448i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4963171779 - 2.094126837i\)
\(L(\frac12)\) \(\approx\) \(0.4963171779 - 2.094126837i\)
\(L(1)\) \(\approx\) \(1.133095829 - 0.9399209549i\)
\(L(1)\) \(\approx\) \(1.133095829 - 0.9399209549i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + (0.766 - 0.642i)T \)
7 \( 1 + (-0.173 - 0.984i)T \)
11 \( 1 + (0.939 + 0.342i)T \)
13 \( 1 + (-0.766 - 0.642i)T \)
17 \( 1 + (-0.5 + 0.866i)T \)
19 \( 1 + (-0.5 - 0.866i)T \)
23 \( 1 + (0.173 - 0.984i)T \)
29 \( 1 + (-0.766 + 0.642i)T \)
31 \( 1 + (0.173 - 0.984i)T \)
37 \( 1 + (0.5 - 0.866i)T \)
41 \( 1 + (-0.766 - 0.642i)T \)
43 \( 1 + (0.939 + 0.342i)T \)
47 \( 1 + (0.173 + 0.984i)T \)
53 \( 1 + T \)
59 \( 1 + (0.939 - 0.342i)T \)
61 \( 1 + (0.173 + 0.984i)T \)
67 \( 1 + (-0.766 - 0.642i)T \)
71 \( 1 + (0.5 - 0.866i)T \)
73 \( 1 + (0.5 + 0.866i)T \)
79 \( 1 + (0.766 - 0.642i)T \)
83 \( 1 + (0.766 - 0.642i)T \)
89 \( 1 + (0.5 + 0.866i)T \)
97 \( 1 + (0.939 + 0.342i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−28.98340498049403409930974168135, −27.50952569073379679853562594519, −26.6615249144601741069566227720, −25.32060093896823256213707824712, −24.853546658783447052200357050757, −23.85082871342788068006212009369, −22.638738626220733469917559148450, −21.92573632804805770504762222125, −21.10335772416814639788233113893, −19.71060452670389183956841588453, −18.54737511436443375003198086720, −17.258536344998870228921851320889, −16.38097775414134817961881940072, −15.29116638289779700894982500710, −14.4470707535614744065304072897, −13.392139593721799755154849165236, −12.10605247635041217188435943035, −11.543947979090749751640688906858, −9.497320459087655292317069352389, −8.52393488083948691486034627981, −7.10905710256079801543947719189, −6.09679911700558641136247035952, −4.96229911415734891772758155160, −3.62810576117823645306201269676, −2.22173311302235178481761845076, 0.64019134318378091277318118665, 2.2508116295022876473626510607, 3.782424763935420470993633398511, 4.664181584200685602781115182557, 6.21867347776775457475279305251, 7.26977525129123372727977851026, 9.12794621151529522980012270549, 10.303765649026193849108342992917, 11.12756726206280043446001825817, 12.47390627696760827919818626851, 13.22287529022492149969555677864, 14.44619164576971377439931247618, 15.168996254085331556803317493875, 16.69642888803396124682928713797, 17.70119541487532359548618214773, 19.2931111843094577177368679081, 19.891012961829423226243049938546, 20.76541503492328230995923056640, 22.11760331823383847298515306363, 22.61901001931390962493397691824, 23.82838759525298120125562942136, 24.545256173596679549590432036726, 25.88498156065350891856336572444, 27.12235562413353914508715713025, 28.027902469002063551080936703753

Graph of the $Z$-function along the critical line