L(s) = 1 | + (0.173 + 0.984i)2-s + (−0.939 + 0.342i)4-s + (0.939 + 0.342i)7-s + (−0.5 − 0.866i)8-s + (−0.766 + 0.642i)11-s + (−0.173 + 0.984i)13-s + (−0.173 + 0.984i)14-s + (0.766 − 0.642i)16-s + (−0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s + (−0.766 − 0.642i)22-s + (−0.939 + 0.342i)23-s − 26-s − 28-s + (−0.173 − 0.984i)29-s + ⋯ |
L(s) = 1 | + (0.173 + 0.984i)2-s + (−0.939 + 0.342i)4-s + (0.939 + 0.342i)7-s + (−0.5 − 0.866i)8-s + (−0.766 + 0.642i)11-s + (−0.173 + 0.984i)13-s + (−0.173 + 0.984i)14-s + (0.766 − 0.642i)16-s + (−0.5 + 0.866i)17-s + (−0.5 − 0.866i)19-s + (−0.766 − 0.642i)22-s + (−0.939 + 0.342i)23-s − 26-s − 28-s + (−0.173 − 0.984i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.2101888349 + 0.8868564293i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.2101888349 + 0.8868564293i\) |
\(L(1)\) |
\(\approx\) |
\(0.6678116554 + 0.6142364193i\) |
\(L(1)\) |
\(\approx\) |
\(0.6678116554 + 0.6142364193i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.173 + 0.984i)T \) |
| 7 | \( 1 + (0.939 + 0.342i)T \) |
| 11 | \( 1 + (-0.766 + 0.642i)T \) |
| 13 | \( 1 + (-0.173 + 0.984i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.173 - 0.984i)T \) |
| 31 | \( 1 + (-0.939 + 0.342i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.173 + 0.984i)T \) |
| 43 | \( 1 + (-0.766 + 0.642i)T \) |
| 47 | \( 1 + (-0.939 - 0.342i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (-0.766 - 0.642i)T \) |
| 61 | \( 1 + (-0.939 - 0.342i)T \) |
| 67 | \( 1 + (-0.173 + 0.984i)T \) |
| 71 | \( 1 + (0.5 - 0.866i)T \) |
| 73 | \( 1 + (0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.173 + 0.984i)T \) |
| 83 | \( 1 + (0.173 + 0.984i)T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.766 + 0.642i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−27.52663741001804607418955633718, −27.26789293205957041810308864248, −25.99422531176010872455948198906, −24.46242481852666982852678234134, −23.642485790622785706901582920724, −22.58102866327103856002051055409, −21.58809896251906265594040990316, −20.59586944537554385634948212272, −20.01074275356912921302716535575, −18.50529219209006200561264878496, −18.012229051216556873737409573653, −16.684606107785965557657959904854, −15.13676462296792274675032163974, −14.09553315526133910136618523453, −13.173488947215486153442081599945, −12.023330552525429613917773364333, −10.91124030953845565439144023785, −10.222557428661515144728914375697, −8.69270239975679666126512514969, −7.740601173917938558958699850864, −5.69294258444595523610583137464, −4.6833944911562110247632564209, −3.29932132752741057908755378522, −1.9251205696162059411531272595, −0.327800050070924462192240186037,
2.07268449464039256344868467593, 4.15272796883351891026736191343, 5.059981017373159896017883320620, 6.353302022373513476977720072673, 7.58446868565009057850979990274, 8.515711377148340618855192175548, 9.68227761192870606928232060610, 11.22524696548081203542889872966, 12.53121193440522949073461739186, 13.6005957546467692075572795023, 14.750795439853280835830088769109, 15.402482002152522938286267939256, 16.62900344638584303929097720506, 17.696304377577618738330481179, 18.3409461508751963946256596067, 19.72386019600777433017638503747, 21.30473699904219401124950242954, 21.79515548624023726420276782417, 23.27836176065825857059613306716, 23.93020470106040825285266974375, 24.770038107548334091574838236047, 25.98299577944020340625220283719, 26.55531688886598277277951588743, 27.85792944981001485696165180795, 28.49758699910065832113547096646