L(s) = 1 | + 2-s − i·3-s + 4-s − i·5-s − i·6-s + 8-s − 9-s − i·10-s − i·12-s + 13-s − 15-s + 16-s − 18-s − 19-s − i·20-s + ⋯ |
L(s) = 1 | + 2-s − i·3-s + 4-s − i·5-s − i·6-s + 8-s − 9-s − i·10-s − i·12-s + 13-s − 15-s + 16-s − 18-s − 19-s − i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.615 - 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.273580033 - 2.610178306i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.273580033 - 2.610178306i\) |
\(L(1)\) |
\(\approx\) |
\(1.604906874 - 1.076956250i\) |
\(L(1)\) |
\(\approx\) |
\(1.604906874 - 1.076956250i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 - iT \) |
| 19 | \( 1 \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - iT \) |
| 37 | \( 1 \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 \) |
| 67 | \( 1 - T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - iT \) |
| 79 | \( 1 \) |
| 83 | \( 1 \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.34079032687796952254341739754, −20.8772850181378611182411478289, −19.779226348293343919213139158358, −19.32991023073393270912351762081, −18.10388370199799909030828857598, −17.31382944788065393395737507935, −16.19781403574308178217896396696, −15.845078583615020272842833959249, −14.94058399955348290980256872066, −14.4895897202538644016588262355, −13.75730148363822258846827597225, −12.88039793195489668053546410348, −11.799545951561620752558214277664, −10.96225902354748829291986727849, −10.74147319615823360050734625302, −9.77465180160820919785282818887, −8.686749398477298376287596880656, −7.67679345770861800328719965177, −6.63892404985798793712360541192, −5.9997233305187962632062833058, −5.16249912413891135766674850762, −4.14993435012424289167487264753, −3.48787049254209302698190734281, −2.83793440874370724689949551988, −1.698581841856292609983373891942,
0.772285405936870733664670945941, 1.78514596101158623231393728180, 2.552709284380171601663577106099, 3.799450457976446926679147411436, 4.55692771910796550189419391893, 5.62475099254194605868217702975, 6.19376324181023346520236884612, 6.98112687519108333798128347045, 8.17441268869377324452715765386, 8.43680851332168523178791182218, 9.78923469727186346260940747483, 11.04261690845566296610761465552, 11.56198115629279229077272944571, 12.59964731531473803301685546819, 12.8366864129406192223486435259, 13.627733294064778730788951010746, 14.271645588117752205961707846461, 15.279060679436874237883174629705, 16.039263975146052323687246083813, 16.93456422916555391114105039025, 17.38099380307933626740971440917, 18.67799892935062483278735066584, 19.21364631283110695373408362872, 20.18830319640649810134264357345, 20.66699950864997337357434312436