L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.866 + 0.5i)3-s + (−0.5 − 0.866i)4-s + (0.866 + 0.5i)5-s − i·6-s + 8-s + (0.5 − 0.866i)9-s + (−0.866 + 0.5i)10-s + (0.866 + 0.5i)12-s + 13-s − 15-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)18-s + (0.5 − 0.866i)19-s − i·20-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.866 + 0.5i)3-s + (−0.5 − 0.866i)4-s + (0.866 + 0.5i)5-s − i·6-s + 8-s + (0.5 − 0.866i)9-s + (−0.866 + 0.5i)10-s + (0.866 + 0.5i)12-s + 13-s − 15-s + (−0.5 + 0.866i)16-s + (0.5 + 0.866i)18-s + (0.5 − 0.866i)19-s − i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.510 + 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.510 + 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9347876938 + 0.5319010269i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9347876938 + 0.5319010269i\) |
\(L(1)\) |
\(\approx\) |
\(0.7112388478 + 0.3675296380i\) |
\(L(1)\) |
\(\approx\) |
\(0.7112388478 + 0.3675296380i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 - iT \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.5 - 0.866i)T \) |
| 61 | \( 1 + (0.866 + 0.5i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.866 - 0.5i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 - 0.866i)T \) |
| 97 | \( 1 - iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.838480395649596402918330612425, −20.19909542787605748155662894276, −19.116835880771351018652933097234, −18.4167799209493967314131057167, −17.99644883161940365765525418168, −17.1700287643382091222940144856, −16.56229579861976001767676224852, −15.993761564643440324145495149178, −14.364950634095525377345361271474, −13.54663184490888188586856464574, −12.89444222790091235428003628033, −12.38947641965207507919721703373, −11.44545661294220519146983140126, −10.74960786908833851698083299966, −10.098416965271157118083268839807, −9.16311357379235081544682354452, −8.432519407646299744082818175738, −7.46865141670357395005076466076, −6.49024359887477994131185557146, −5.57679665478579045295665454927, −4.82508107391670071041846786844, −3.73663419265483184000839340820, −2.53117209755856052349324866977, −1.49989496550486233906441197022, −0.99886280233091995514585786470,
0.75345588571394919943708651855, 1.83549922896055039185848245317, 3.35871806695801112228167937241, 4.44947379623231860300266837650, 5.535860975901879093648292077500, 5.773123447634528465872338491810, 6.83660408372511920933352621134, 7.28800932436616720066149917753, 8.80394427411402720545643209677, 9.26592561806805875389630322001, 10.15639900795398901748104232457, 10.81184405755048996374811372689, 11.39575801409504198180103053889, 12.77206851876492477709426550613, 13.61427795730721914539947239934, 14.267688970062885299571411710510, 15.38810593180582239951808984307, 15.64625522346125472235748507500, 16.663075581321437561459959803219, 17.30891239350935079984010431067, 17.84725635685901681438707695191, 18.47249187760450279647998856470, 19.22903609807311591971967750581, 20.44338435580411513011649143365, 21.25257709528418099712351147003