L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 0.5i)5-s + i·6-s + 8-s + (0.5 + 0.866i)9-s + (−0.866 − 0.5i)10-s + (0.866 − 0.5i)12-s + 13-s − 15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)18-s + (0.5 + 0.866i)19-s + i·20-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.5 + 0.866i)4-s + (0.866 − 0.5i)5-s + i·6-s + 8-s + (0.5 + 0.866i)9-s + (−0.866 − 0.5i)10-s + (0.866 − 0.5i)12-s + 13-s − 15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)18-s + (0.5 + 0.866i)19-s + i·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1309 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9347876938 - 0.5319010269i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9347876938 - 0.5319010269i\) |
\(L(1)\) |
\(\approx\) |
\(0.7112388478 - 0.3675296380i\) |
\(L(1)\) |
\(\approx\) |
\(0.7112388478 - 0.3675296380i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.866 - 0.5i)T \) |
| 29 | \( 1 + iT \) |
| 31 | \( 1 + (-0.866 - 0.5i)T \) |
| 37 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + iT \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 + (0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.866 - 0.5i)T \) |
| 67 | \( 1 + (-0.5 + 0.866i)T \) |
| 71 | \( 1 - iT \) |
| 73 | \( 1 + (0.866 + 0.5i)T \) |
| 79 | \( 1 + (-0.866 + 0.5i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (0.5 + 0.866i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.25257709528418099712351147003, −20.44338435580411513011649143365, −19.22903609807311591971967750581, −18.47249187760450279647998856470, −17.84725635685901681438707695191, −17.30891239350935079984010431067, −16.663075581321437561459959803219, −15.64625522346125472235748507500, −15.38810593180582239951808984307, −14.267688970062885299571411710510, −13.61427795730721914539947239934, −12.77206851876492477709426550613, −11.39575801409504198180103053889, −10.81184405755048996374811372689, −10.15639900795398901748104232457, −9.26592561806805875389630322001, −8.80394427411402720545643209677, −7.28800932436616720066149917753, −6.83660408372511920933352621134, −5.773123447634528465872338491810, −5.535860975901879093648292077500, −4.44947379623231860300266837650, −3.35871806695801112228167937241, −1.83549922896055039185848245317, −0.75345588571394919943708651855,
0.99886280233091995514585786470, 1.49989496550486233906441197022, 2.53117209755856052349324866977, 3.73663419265483184000839340820, 4.82508107391670071041846786844, 5.57679665478579045295665454927, 6.49024359887477994131185557146, 7.46865141670357395005076466076, 8.432519407646299744082818175738, 9.16311357379235081544682354452, 10.098416965271157118083268839807, 10.74960786908833851698083299966, 11.44545661294220519146983140126, 12.38947641965207507919721703373, 12.89444222790091235428003628033, 13.54663184490888188586856464574, 14.364950634095525377345361271474, 15.993761564643440324145495149178, 16.56229579861976001767676224852, 17.1700287643382091222940144856, 17.99644883161940365765525418168, 18.4167799209493967314131057167, 19.116835880771351018652933097234, 20.19909542787605748155662894276, 20.838480395649596402918330612425