L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.5 − 0.866i)7-s − 8-s + 10-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s + 17-s − 19-s + (0.5 − 0.866i)20-s + (−0.5 − 0.866i)22-s + (−0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)4-s + (0.5 + 0.866i)5-s + (0.5 − 0.866i)7-s − 8-s + 10-s + (0.5 − 0.866i)11-s + (−0.5 − 0.866i)14-s + (−0.5 + 0.866i)16-s + 17-s − 19-s + (0.5 − 0.866i)20-s + (−0.5 − 0.866i)22-s + (−0.5 − 0.866i)23-s + (−0.5 + 0.866i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.067948710 - 0.8961153693i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.067948710 - 0.8961153693i\) |
\(L(1)\) |
\(\approx\) |
\(1.191871764 - 0.6451893938i\) |
\(L(1)\) |
\(\approx\) |
\(1.191871764 - 0.6451893938i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 + (-0.5 + 0.866i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (-0.5 + 0.866i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.5 - 0.866i)T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.63134872813522645666369492977, −27.99402309699696102059370805482, −27.67397571080857909159941415437, −25.923486151924814166776918340942, −25.24701670664513226296121133885, −24.47455002281503740062649296105, −23.52788457900165204566823163208, −22.34690275381276980624988073729, −21.33025928897640237727114435916, −20.63329698210662452313619923808, −18.92136894714334107780198520218, −17.56400491254571950646571853644, −17.056601077828851735643016379203, −15.72925792225618222449042885613, −14.84138873071722722790727567427, −13.75684615488050219548132008498, −12.55042380166292883903458349953, −11.882769792167515423037970636908, −9.712525819362819759116194508044, −8.7417779599640911777791877740, −7.676982780911402790092696873171, −6.10145036462221690319129487602, −5.224491509196370250724627779077, −4.073241575106952478982921086752, −2.054907577994694077965041526842,
1.43953985584737901792371024827, 2.98920976045348041017487324351, 4.129741553478762654431907276196, 5.65677282027855632809497717644, 6.836717704166833946768117426090, 8.58873242245059907122150638241, 10.14712450231741440092506827758, 10.73854477163926637754467237274, 11.82746536198846904289823290767, 13.247001496982654437303459483844, 14.22761675717029177979384549568, 14.73127870187947901489553337384, 16.615607600147492164747546577363, 17.842221201341040499068273627601, 18.82874890362890044480236480716, 19.75899135564110679668101418911, 21.00848195346114083790464876638, 21.67356231273020342641088518300, 22.76713059156623032799907290111, 23.59525726883986215426958047008, 24.72769415731251479498117731387, 26.19582288668527249596570850746, 27.09623126728098279482566981458, 28.02174522029504583508004906949, 29.499470504477703539537007746276