L(s) = 1 | − i·2-s + i·3-s − 4-s + 6-s + i·7-s + i·8-s − 9-s − 11-s − i·12-s + i·13-s + 14-s + 16-s + i·17-s + i·18-s + 19-s + ⋯ |
L(s) = 1 | − i·2-s + i·3-s − 4-s + 6-s + i·7-s + i·8-s − 9-s − 11-s − i·12-s + i·13-s + 14-s + 16-s + i·17-s + i·18-s + 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6680381980 + 0.3724556893i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6680381980 + 0.3724556893i\) |
\(L(1)\) |
\(\approx\) |
\(0.8376714048 + 0.09225174645i\) |
\(L(1)\) |
\(\approx\) |
\(0.8376714048 + 0.09225174645i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 + iT \) |
| 11 | \( 1 - T \) |
| 13 | \( 1 \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + iT \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + iT \) |
| 67 | \( 1 + iT \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.2459253737005101838727436373, −28.01988318105173831797997385330, −26.72386758549528447153031043612, −26.01188823825516679106428362211, −24.85939646597676013289397506239, −24.19830976724080510721335422454, −23.06934129413658828145501367714, −22.68320983016541875822393794004, −20.76139095361766182579602955350, −19.65635769586867918714568215770, −18.3329463396254463905274650213, −17.782827719357717093912055452383, −16.66305630292418669214073005375, −15.57295762084771910378951577165, −14.16008527753850860321689838451, −13.46069389830555538903859332770, −12.5524703223377849333060986834, −10.85441624329397541338059841897, −9.432156360914694131983218481022, −7.72790579390347925440623237680, −7.562523350734194193217000182364, −6.08719723881811895872606309348, −4.94469822878918910700773224126, −3.09696311304298618561943045470, −0.75662131039019637418656834919,
2.199928185192084790206002843524, 3.4228681201039012030788898729, 4.756924298910491085952422347461, 5.75934672464623345776334564983, 8.214447764703188014167123671119, 9.200781289430932165609533912083, 10.13240251510197558162710585885, 11.2519960479641007099008479372, 12.14728208423837505923693864415, 13.51042252099451692295443558719, 14.72684208729019894125316226329, 15.74314974170116751597007975572, 17.03138580631204901313173350205, 18.29420325904321819873778283244, 19.201694731993165798260241153277, 20.45226646819176854516971327212, 21.30910490505895811992861040487, 21.91406225194034184465599426199, 22.9271873010416688595518729477, 24.16199318686836411486966290520, 25.93388512340070286242862786454, 26.49685653676437497729135502620, 27.70174485919453748489302338730, 28.515484614809218202289071197159, 28.99819858533589332646767839057