L(s) = 1 | + (−0.309 − 0.951i)3-s − 7-s + (−0.809 + 0.587i)9-s + (0.809 + 0.587i)11-s + (−0.809 + 0.587i)13-s + (0.309 − 0.951i)17-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (0.809 + 0.587i)27-s + (0.309 + 0.951i)29-s + (−0.309 + 0.951i)31-s + (0.309 − 0.951i)33-s + (−0.809 + 0.587i)37-s + (0.809 + 0.587i)39-s + ⋯ |
L(s) = 1 | + (−0.309 − 0.951i)3-s − 7-s + (−0.809 + 0.587i)9-s + (0.809 + 0.587i)11-s + (−0.809 + 0.587i)13-s + (0.309 − 0.951i)17-s + (−0.309 + 0.951i)19-s + (0.309 + 0.951i)21-s + (0.809 + 0.587i)23-s + (0.809 + 0.587i)27-s + (0.309 + 0.951i)29-s + (−0.309 + 0.951i)31-s + (0.309 − 0.951i)33-s + (−0.809 + 0.587i)37-s + (0.809 + 0.587i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0627 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0627 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4608449620 + 0.4327622248i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4608449620 + 0.4327622248i\) |
\(L(1)\) |
\(\approx\) |
\(0.7371752092 - 0.04637913299i\) |
\(L(1)\) |
\(\approx\) |
\(0.7371752092 - 0.04637913299i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
| 13 | \( 1 + (-0.809 + 0.587i)T \) |
| 17 | \( 1 + (0.309 - 0.951i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.809 + 0.587i)T \) |
| 29 | \( 1 + (0.309 + 0.951i)T \) |
| 31 | \( 1 + (-0.309 + 0.951i)T \) |
| 37 | \( 1 + (-0.809 + 0.587i)T \) |
| 41 | \( 1 + (-0.809 + 0.587i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.309 - 0.951i)T \) |
| 53 | \( 1 + (0.309 + 0.951i)T \) |
| 59 | \( 1 + (0.809 - 0.587i)T \) |
| 61 | \( 1 + (-0.809 - 0.587i)T \) |
| 67 | \( 1 + (-0.309 + 0.951i)T \) |
| 71 | \( 1 + (-0.309 - 0.951i)T \) |
| 73 | \( 1 + (-0.809 - 0.587i)T \) |
| 79 | \( 1 + (-0.309 - 0.951i)T \) |
| 83 | \( 1 + (-0.309 + 0.951i)T \) |
| 89 | \( 1 + (-0.809 - 0.587i)T \) |
| 97 | \( 1 + (0.309 + 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.2812328568194312208501732734, −28.3652119654551698465173174414, −27.3660442653951492860851023994, −26.45035001564266570915879399980, −25.5203691062573707028527624533, −24.22175256779656038387769883602, −22.83439544703337502566509660660, −22.19172881622086970056046564509, −21.26112397752685396406947392780, −19.911056445207523374333679212651, −19.133362088459581217234344806444, −17.33313305804766079163347434630, −16.71975689019295802904888902178, −15.52061725834967597949192436065, −14.64983897951443198065927235051, −13.12932630035721949013112148602, −11.901419066263659124349666009514, −10.64388593886479702599395688675, −9.67278039225319498766397784975, −8.61989299945966259778032793596, −6.72057165798615857117706644475, −5.60256557437483113883434165820, −4.126720332424636467799032055066, −2.947463480370356448961343047482, −0.29022636437210361807260763837,
1.560246336727401102574530402334, 3.18456918364470671829442409841, 5.08834724351264668510780704642, 6.59628993716829020219631557170, 7.236485812334507357772093424121, 8.91173398224218631146361475032, 10.11484623580118607695810894943, 11.78635466790946841521428118965, 12.43666431849570842358704151760, 13.634274746232372565858670022206, 14.7185416177557305374089236413, 16.37978554724940669560305561433, 17.133198212650653751092867350160, 18.42184684644512107039973227453, 19.32141236736612271782480742136, 20.145323022743450685270848639687, 21.8442014634616648246486865595, 22.8173372724719618114590859359, 23.55595774476149595621941747832, 25.01592319325559569953762120866, 25.3636196453880871767195300260, 26.870030724653214897204591634118, 28.05261319418904798998908232915, 29.283621861108947538963220336918, 29.563502566082643705808681646508