L(s) = 1 | + (−0.309 + 0.951i)3-s − 7-s + (−0.809 − 0.587i)9-s + (0.809 − 0.587i)11-s + (−0.809 − 0.587i)13-s + (0.309 + 0.951i)17-s + (−0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + (0.809 − 0.587i)23-s + (0.809 − 0.587i)27-s + (0.309 − 0.951i)29-s + (−0.309 − 0.951i)31-s + (0.309 + 0.951i)33-s + (−0.809 − 0.587i)37-s + (0.809 − 0.587i)39-s + ⋯ |
L(s) = 1 | + (−0.309 + 0.951i)3-s − 7-s + (−0.809 − 0.587i)9-s + (0.809 − 0.587i)11-s + (−0.809 − 0.587i)13-s + (0.309 + 0.951i)17-s + (−0.309 − 0.951i)19-s + (0.309 − 0.951i)21-s + (0.809 − 0.587i)23-s + (0.809 − 0.587i)27-s + (0.309 − 0.951i)29-s + (−0.309 − 0.951i)31-s + (0.309 + 0.951i)33-s + (−0.809 − 0.587i)37-s + (0.809 − 0.587i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0627 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0627 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4608449620 - 0.4327622248i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4608449620 - 0.4327622248i\) |
\(L(1)\) |
\(\approx\) |
\(0.7371752092 + 0.04637913299i\) |
\(L(1)\) |
\(\approx\) |
\(0.7371752092 + 0.04637913299i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.309 + 0.951i)T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + (0.809 - 0.587i)T \) |
| 13 | \( 1 + (-0.809 - 0.587i)T \) |
| 17 | \( 1 + (0.309 + 0.951i)T \) |
| 19 | \( 1 + (-0.309 - 0.951i)T \) |
| 23 | \( 1 + (0.809 - 0.587i)T \) |
| 29 | \( 1 + (0.309 - 0.951i)T \) |
| 31 | \( 1 + (-0.309 - 0.951i)T \) |
| 37 | \( 1 + (-0.809 - 0.587i)T \) |
| 41 | \( 1 + (-0.809 - 0.587i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.309 + 0.951i)T \) |
| 53 | \( 1 + (0.309 - 0.951i)T \) |
| 59 | \( 1 + (0.809 + 0.587i)T \) |
| 61 | \( 1 + (-0.809 + 0.587i)T \) |
| 67 | \( 1 + (-0.309 - 0.951i)T \) |
| 71 | \( 1 + (-0.309 + 0.951i)T \) |
| 73 | \( 1 + (-0.809 + 0.587i)T \) |
| 79 | \( 1 + (-0.309 + 0.951i)T \) |
| 83 | \( 1 + (-0.309 - 0.951i)T \) |
| 89 | \( 1 + (-0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.309 - 0.951i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−29.563502566082643705808681646508, −29.283621861108947538963220336918, −28.05261319418904798998908232915, −26.870030724653214897204591634118, −25.3636196453880871767195300260, −25.01592319325559569953762120866, −23.55595774476149595621941747832, −22.8173372724719618114590859359, −21.8442014634616648246486865595, −20.145323022743450685270848639687, −19.32141236736612271782480742136, −18.42184684644512107039973227453, −17.133198212650653751092867350160, −16.37978554724940669560305561433, −14.7185416177557305374089236413, −13.634274746232372565858670022206, −12.43666431849570842358704151760, −11.78635466790946841521428118965, −10.11484623580118607695810894943, −8.91173398224218631146361475032, −7.236485812334507357772093424121, −6.59628993716829020219631557170, −5.08834724351264668510780704642, −3.18456918364470671829442409841, −1.560246336727401102574530402334,
0.29022636437210361807260763837, 2.947463480370356448961343047482, 4.126720332424636467799032055066, 5.60256557437483113883434165820, 6.72057165798615857117706644475, 8.61989299945966259778032793596, 9.67278039225319498766397784975, 10.64388593886479702599395688675, 11.901419066263659124349666009514, 13.12932630035721949013112148602, 14.64983897951443198065927235051, 15.52061725834967597949192436065, 16.71975689019295802904888902178, 17.33313305804766079163347434630, 19.133362088459581217234344806444, 19.911056445207523374333679212651, 21.26112397752685396406947392780, 22.19172881622086970056046564509, 22.83439544703337502566509660660, 24.22175256779656038387769883602, 25.5203691062573707028527624533, 26.45035001564266570915879399980, 27.3660442653951492860851023994, 28.3652119654551698465173174414, 29.2812328568194312208501732734