L(s) = 1 | + (−0.990 + 0.139i)2-s + (0.241 + 0.970i)3-s + (0.961 − 0.275i)4-s + (−0.374 − 0.927i)6-s + (−0.913 − 0.406i)7-s + (−0.913 + 0.406i)8-s + (−0.882 + 0.469i)9-s + (0.5 + 0.866i)12-s + (−0.848 − 0.529i)13-s + (0.961 + 0.275i)14-s + (0.848 − 0.529i)16-s + (0.882 + 0.469i)17-s + (0.809 − 0.587i)18-s + (0.173 − 0.984i)21-s + (0.939 + 0.342i)23-s + (−0.615 − 0.788i)24-s + ⋯ |
L(s) = 1 | + (−0.990 + 0.139i)2-s + (0.241 + 0.970i)3-s + (0.961 − 0.275i)4-s + (−0.374 − 0.927i)6-s + (−0.913 − 0.406i)7-s + (−0.913 + 0.406i)8-s + (−0.882 + 0.469i)9-s + (0.5 + 0.866i)12-s + (−0.848 − 0.529i)13-s + (0.961 + 0.275i)14-s + (0.848 − 0.529i)16-s + (0.882 + 0.469i)17-s + (0.809 − 0.587i)18-s + (0.173 − 0.984i)21-s + (0.939 + 0.342i)23-s + (−0.615 − 0.788i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.492 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.492 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6790837039 + 0.3959818415i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6790837039 + 0.3959818415i\) |
\(L(1)\) |
\(\approx\) |
\(0.6358099340 + 0.2115357588i\) |
\(L(1)\) |
\(\approx\) |
\(0.6358099340 + 0.2115357588i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.990 + 0.139i)T \) |
| 3 | \( 1 + (0.241 + 0.970i)T \) |
| 7 | \( 1 + (-0.913 - 0.406i)T \) |
| 13 | \( 1 + (-0.848 - 0.529i)T \) |
| 17 | \( 1 + (0.882 + 0.469i)T \) |
| 23 | \( 1 + (0.939 + 0.342i)T \) |
| 29 | \( 1 + (-0.719 - 0.694i)T \) |
| 31 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (-0.241 - 0.970i)T \) |
| 43 | \( 1 + (0.939 - 0.342i)T \) |
| 47 | \( 1 + (-0.438 + 0.898i)T \) |
| 53 | \( 1 + (-0.0348 + 0.999i)T \) |
| 59 | \( 1 + (0.438 + 0.898i)T \) |
| 61 | \( 1 + (-0.615 + 0.788i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 + (0.0348 + 0.999i)T \) |
| 73 | \( 1 + (0.997 + 0.0697i)T \) |
| 79 | \( 1 + (-0.374 + 0.927i)T \) |
| 83 | \( 1 + (0.978 - 0.207i)T \) |
| 89 | \( 1 + (0.766 - 0.642i)T \) |
| 97 | \( 1 + (-0.990 + 0.139i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.198683669663835282195177816829, −20.32313127400709343508471552939, −19.5614353124827215584582986160, −19.03065750206976643760547609109, −18.50292986010570210965139097546, −17.68883979342583541145922517150, −16.74991229737571251195750421324, −16.322555635606922981977271452225, −15.10483704773249578005851157585, −14.466793375384281751627581521237, −13.26591752525395082598608247097, −12.50085708117739547796885566157, −11.95687715818572095822855249985, −11.109912867447914298584499241338, −9.884901801154626176174295170520, −9.34934912861042745615804400470, −8.51716349517588145385184589488, −7.628455258665366305854104637786, −6.8725315023820551115607835640, −6.309662145121727891791974560969, −5.16479152612154577115535321771, −3.338005931854667809565292266264, −2.77283894884242162311151472673, −1.80002251656850231848368886020, −0.66253252589321318784115195792,
0.75605719779032937669459687979, 2.40378665941308458354416275087, 3.137599682629620341657373183868, 4.11543490623213200345543889952, 5.43490280133764128362400134778, 6.10891561068389387618038574187, 7.36212090267023842034234894092, 7.90851257107731242683114937247, 9.09634904661572858030086628347, 9.591617187805317455686029610774, 10.28989134477597911811771883227, 10.902895869366473556542242368916, 11.94003626683972398715353313672, 12.88779222462834024020073228234, 14.04309126769631786259156880632, 14.99033532322020019325136454187, 15.45033792241242471052932716329, 16.35323108698948358770320728599, 16.98954607938084045983937579289, 17.42205176356673191578234063552, 18.80706940024383374475592483025, 19.35944351523988893180118363569, 19.98849693937564381247992854710, 20.78334798733481306141121463140, 21.4097865780704287301673634738