L(s) = 1 | + (−0.406 + 0.913i)2-s + (−0.743 − 0.669i)3-s + (−0.669 − 0.743i)4-s + (0.913 − 0.406i)6-s + (−0.951 − 0.309i)7-s + (0.951 − 0.309i)8-s + (0.104 + 0.994i)9-s + i·12-s + (−0.994 + 0.104i)13-s + (0.669 − 0.743i)14-s + (−0.104 + 0.994i)16-s + (0.994 + 0.104i)17-s + (−0.951 − 0.309i)18-s + (0.5 + 0.866i)21-s + (−0.866 − 0.5i)23-s + (−0.913 − 0.406i)24-s + ⋯ |
L(s) = 1 | + (−0.406 + 0.913i)2-s + (−0.743 − 0.669i)3-s + (−0.669 − 0.743i)4-s + (0.913 − 0.406i)6-s + (−0.951 − 0.309i)7-s + (0.951 − 0.309i)8-s + (0.104 + 0.994i)9-s + i·12-s + (−0.994 + 0.104i)13-s + (0.669 − 0.743i)14-s + (−0.104 + 0.994i)16-s + (0.994 + 0.104i)17-s + (−0.951 − 0.309i)18-s + (0.5 + 0.866i)21-s + (−0.866 − 0.5i)23-s + (−0.913 − 0.406i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3165132815 - 0.2505528879i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3165132815 - 0.2505528879i\) |
\(L(1)\) |
\(\approx\) |
\(0.5225312103 + 0.04231531413i\) |
\(L(1)\) |
\(\approx\) |
\(0.5225312103 + 0.04231531413i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 11 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.406 + 0.913i)T \) |
| 3 | \( 1 + (-0.743 - 0.669i)T \) |
| 7 | \( 1 + (-0.951 - 0.309i)T \) |
| 13 | \( 1 + (-0.994 + 0.104i)T \) |
| 17 | \( 1 + (0.994 + 0.104i)T \) |
| 23 | \( 1 + (-0.866 - 0.5i)T \) |
| 29 | \( 1 + (0.669 + 0.743i)T \) |
| 31 | \( 1 + (0.809 - 0.587i)T \) |
| 37 | \( 1 + (0.951 + 0.309i)T \) |
| 41 | \( 1 + (-0.669 + 0.743i)T \) |
| 43 | \( 1 + (0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.207 + 0.978i)T \) |
| 53 | \( 1 + (-0.994 + 0.104i)T \) |
| 59 | \( 1 + (-0.978 + 0.207i)T \) |
| 61 | \( 1 + (0.913 - 0.406i)T \) |
| 67 | \( 1 + (-0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.104 - 0.994i)T \) |
| 73 | \( 1 + (-0.207 - 0.978i)T \) |
| 79 | \( 1 + (0.913 + 0.406i)T \) |
| 83 | \( 1 + (0.587 - 0.809i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.406 + 0.913i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.69892014083144960734718550888, −21.066087938699398425364098970574, −20.122412550370128154309599593972, −19.40425283820668645294512091771, −18.69925370061254309744334807362, −17.75229916829315823848178923312, −17.160164437997304208286256776803, −16.3515646521251219143380651834, −15.736157338852351798197446761191, −14.63452331958875009581489385840, −13.64381907888421306847632879894, −12.52027609266561755405960411602, −12.14786509593148510712936577202, −11.41320468916277602869937784524, −10.24967078807588186219893534679, −9.92168084991641963648252272611, −9.27341515237949984845102565799, −8.162983904106190885551491259164, −7.108793037695325549140172553128, −5.99883976700624247928789697994, −5.11617838402706615083820603636, −4.15993505066504766980227574613, −3.298949112768584868654809757576, −2.44666314018277605552704811851, −0.93188267467405698987547105391,
0.291906787316538205898690480266, 1.41104096623990704447939807510, 2.797679446391355227995076318662, 4.29432962221109510587199057739, 5.13097280319389876077214684527, 6.161914540591510475812398750140, 6.54991151159712286661522178653, 7.56555258882522437494578633587, 8.03672497533540091807940610823, 9.39808258951776481495652930093, 10.04725284825909728346735578128, 10.76811665080669608182106891333, 12.08269251209594978514444285717, 12.63718649061917358129228052046, 13.60051871788678767725875670286, 14.24406965364938942413438370188, 15.24468677104830204031715739457, 16.3322629325343448874581498678, 16.56782272505571330207912099909, 17.40186413968998672581760193688, 18.11256074155679138194760011249, 19.02648170868739013554216997039, 19.35820221946213425809176261785, 20.30845349165930717526875954524, 21.86277733416019330174963194735